
Platform Administration

 | Contents | 2

Contents

Administering the Platform.. 4
Jive and High-Availability.. 4

Supported High-Availability Jive Configurations...4

Configuring Jive for High-Availability..10

Failover Behavior of HA Servers..28

Recovering Jive After a Failure..36

Clustering in Jive...41

Clustering Best Practices... 42

Clustering FAQ... 43

Managing an Application Cluster..43

In-Memory Caching... 44

Parts of the In-Memory Caching System... 44

How In-Memory Caching Works...45

Cache Server Deployment Design...46

Choosing the Number of Cache Server Machines...46

Adjusting Cache-Related Memory..47

Managing In-Memory Cache Servers...47

Configuring In-Memory Caches..49

Troubleshooting Caching and Clustering... 50

Monitoring Your Jive Environment.. 52

Basic Monitoring Recommendations.. 52

Jive Logs...56

Advanced Monitoring Recommendations...58

Operations Cookbook..59

Configuring SSL on the Load Balancer.. 60

Configuring SSL Between a Load Balancer and Web App Nodes.. 61

Configuring Session Affinity on a Load Balancer...61

Restricting Admin Console Access by IP Address...61

Changing the Configuration of an Existing Instance.. 62

Using an External Load Balancer.. 63

Enable Application Debugger Support... 64

Setting Up Document Conversion..64

Adding Fonts to Support Office Document Preview...65

Sharing Exchange Calendars in an HTML Text Widget.. 65

Fine-Tuning Performance..67

Client-Side Resource Caching... 67

Configuring External Static Resource Caching.. 67

Adjusting the Java Virtual Machine (JVM) Settings... 68

 | Contents | 3

Search Index Rebuilding.. 69

Using a Content Distribution Tool with Jive... 69

Application Management Command Reference..72

Startup Properties Commands... 72

Services Properties Commands... 73

 | Administering the Platform | 4

Administering the Platform

This section includes information about administering and managing the platform, including run books,

configuration information, and performance tuning help.

Jive and High-Availability

Jive has been deployed in a wide variety of HA configurations. Learn how to design your Jive configuration

for high-availability, and how each of the application's components handles failover and recovery.

Supported High-Availability Jive Configurations
This section describes the supported HA configurations: single data center and multiple data centers.

Jive supports two types of HA configurations:

Local high-availability in a single data center This ensures availability in a single data center

deployment through the use of redundant and load-

balanced nodes for the web application, cache,

document conversion, and databases.

Geographically-distributed high-availability

across multiple data centers

This ensures availability across multiple data

centers in the event of a disaster affecting the

active datacenter through the use of redundant

(but not hot) nodes for the web application, cache,

document conversion, and databases.

Designing a Single Data Center HA Configuration

The single data center HA configuration ensures availability through the use of redundant and load-

balanced nodes for the web application, cache, document conversion, and databases. This configuration

requires that all of the nodes be physically located in the same data center.

Note: You may choose to configure redundant databases and replicate data between them. Jive

Software does not provide database replication configuration or support. Your data center and/or

DBA team must provide database support for you and your configuration. We have seen customers

successfully deploy Oracle RAC and SQL server HA configurations with Jive.

As an example, here is how a single data center HA configuration might look (your configuration may vary):

 | Administering the Platform | 5

In this configuration, the web application nodes are configured in a cluster and deployed behind a load

balancer, preferably an enterprise-grade load balancer such as the F5 BIG-IP (for more information about

 | Administering the Platform | 6

how to set up a cluster, see Clustering in Jive). At Jive Software, we have observed that most customers

deploy multiple web applications nodes (usually three or more) in a single data center configuration.

Alternatively, you could choose to deploy additional web application nodes in the cluster as passive

participants which are online and standing by (i.e., the Jive application is running on these nodes, but not

serving requests), and available to come online if necessary.

Designing a Multiple Data Center HA Configuration

The multiple data centers HA configuration ensures availability across geographically-distributed and

redundant Jive platforms as an active/passive configuration. Note that you cannot have Jive running in

multiple data centers simultaneously.

Note: You may choose to configure redundant databases and replicate data between them. Jive

Software does not provide database replication configuration or support. Your data center and/or

DBA team must provide database support for you and your configuration. We have seen customers

successfully deploy Oracle RAC and SQL server HA configurations with Jive.

As an example, here is how a multiple data center HA configuration might look (your configuration may

vary). Click on the image to enlarge it.

 | Administering the Platform | 7

In this configuration, the web application nodes are configured in a cluster and deployed behind a load

balancer, preferably an enterprise-grade load balancer such as the F5 BIG-IP (for more information about

how to set up a cluster, see Clustering in Jive).

In the passive standby data center system, you can leave the web application nodes booted up at the

operating system level, but not the Jive application (while the active production data center is running).

However, the cache node(s), the Document Conversion service nodes, the Activity Engine nodes, and the

database nodes in the passive standby data center may be left on.

Caution: The web app nodes in the passive standby data center cannot be up and available

all the time. If you attempted to do this, the web application nodes in the passive data center

would communicate with the active production cluster as if they were part of it, which would cause

catastrophic issues in your production cluster.

Be sure to read Starting Up After a Failover to learn how to bring up Data Center B in the case of a failure.

Multiple Data Center HA Configuration Illustration

Supported HA Search

On-premise HA search supports two kinds of HA configurations: single data center and multiple data

centers.

You can configure your on-premise search nodes in either of these HA configurations:

• Single data center

• Multiple data centers

 | Administering the Platform | 8

To understand what you'll need for your HA search configuration, be sure to read Capacity and Scaling

Considerations and Required Nodes for an On-premise HA Search Service.

The following diagram shows the simplest HA configuration for search. You might also find it helpful to

understand how a single on-premise search node works before diving into Configuring the Search Service

for High-Availability.

 | Administering the Platform | 9

 | Administering the Platform | 10

Configuring Jive for High-Availability
This section describes the special design and configuration recommendations for each component in a

highly available Jive configuration.

Note: The jive_startup.xml located on the web application nodes in /usr/local/jive/applications/

[name of your application]/home/ stores the connection string of the core application databases.

The connection string for all other nodes, including all other databases, is set via the Admin

Console and stored in the core application databases.

Configuring the Web Application Servers for High-Availability

If you're setting up a web application node as a template, then copying the home directory (such as /usr/

local/jive/applications/instance_name/home) to the other web application nodes in the cluster, you must

remove the node.id file and the crypto directory from the home directory before starting the server. The

application will correctly populate them.

Although not required, Jive Software highly recommends that you regularly (at least once a week, but

preferably once a day) replicate the contents of /jiveHome from one of the web application nodes in the

active production data center to all of the web nodes in the warm standby data center. For more on what's

important to persist in a disaster recovery situation, see Restoring the Web Node File System.

To learn how to configure the core application databases, be sure to read Configuring the Core Application

Database for High-Availability.

Caution: When making a copy of jiveHome on the production instance, the Jive application

must NOT be running (if it is running, the Lucene index may get copied in a corrupt state and the

resulting copied index will be invalid). The easiest way of working around this issue is to have a web

application node that participates in the production cluster but does NOT serve HTTP requests.

Shut down the Jive application on it on a nightly basis, make a copy of jiveHome, and then, after the

copy is complete, restart the Jive application on that node.

The following items are stored in /jiveHome and they are particularly important to replicate. For more on

what's important in /jiveHome, see Restoring the Web Node File System.

jive_startup.xml This file contains all of the configuration information

for the platform.

/search This is the most important directory to synchronize.

It contains the Lucene search index, which is what

all of the people search is based on. Note that if you

choose not to replicate this directory on a regular

basis (weekly or daily), when/if a failover occurs

from the production data center to the standby

data center, every web application node in the

new standby production data center will begin the

process of updating its local search index, which is

a CPU and an I/O-intensive process that could take

 | Administering the Platform | 11

hours, depending on how much content has been

added since the last update.

/themes This directory contains all of the theme information

for your community.

Setting Up the Connection String

The jive_startup.xml located on the web application nodes in /usr/local/jive/applications/[name of your

application]/home/ stores the connection string of the core application databases. The connection string

for all other nodes, including all other databases, is set via the Admin Console and stored in the core

application databases.

The application requires you to add a DNS name or IP address for the database server. The database

connection string can either be an IP address or a domain name but should be dynamic in case of a failure

at the database layer. Here's how to set it up:

• If a DNS name is used to specify the location of the database server(s) (this is the preferred method),

the name(s) must resolve to a database server local to the data center. Using the web node names

from the example above, but substituting a DNS name (db01.example.com) in the configuration instead

of an IP address, the DNS name must resolve to the database server db01-dcA.example.com when

requested by either wa01-dcA.example.com or wa02-dcA.example.com, and must resolve to db01-

dcB.example.com when requested by either of the web application nodes wa01-dcB.example.com or

wa02-dcB.example.com.

• If an IP address is used to specify the location of the database server(s), it must be a virtual IP address

that resolves to a database server in the local data center. For example, given web application nodes

wa01-dcA.example.com and wa02-dcA.example.com, both in data center A, and web application nodes

wa01-dcB.example.com and wa02-dcB.example.com in data center B, all pointing to the virtual IP

address 172.16.100.3 in /usr/local/jive/applications/[name of your application]/home/jive_startup.xml,

the IP address must resolve to the database server db01-dcA.example.com when requested by either

wa01-dcA.example.com or wa02-dcA.example.com, and must resolve to db01-dcB.example.com when

requested by either of the web application nodes wa01-dcB.example.com or wa02-dcB.example.com.

Configuring the Activity Engine Server for High-Availability

You configure the Activity Engine service in the Admin Console. You must enter either a DNS name

(preferred) or an IP address, specifying the location of one or more Activity Engine services.

The Jive core platform requires a separate server and database to manage users' activity streams and

recommendations. The Activity Engine service handles a number of key features in the Jive application

including the All Activity stream, streams for places and people, watch emails, trending content and people,

and personalized recommendations (through a connection to a Cloud service). (To learn more about the

Activity Engine database in an HA configuration, be sure to read Configuring the Activity Engine Database

for High-Availability).

 | Administering the Platform | 12

You configure the Activity Engine service in the Admin Console (System > Settings > Activity Engine).

You must enter either a DNS name (preferred) or an IP address, specifying the location of one or more

Activity Engine services.

In both the single data center and the multiple data centers high availability configurations, Jive Software

recommends that you configure the service with a DNS name that resolves to a machine local to its data

center. For example, given web application nodes wa01-dcA.example.com and wa02-dcA.example.com,

both in data center A and web nodes wa01-dcB.example.com and wa02-dcB.example.com in data center

B, all pointing to the DNS name activity-service.example.com via the Admin Console setting, the name

must resolve to the Activity Engine server activity-service-dcA.example.com when requested by either

wa01-dcA.example.com or wa02-dcA.example.com and must resolve to activity-service-dcB.example.com

when requested by either of the nodes wa01-dcB.example.com or wa02-dcB.example.com.

Configuring the Cache Servers for High-Availability

In a multiple data center HA configuration, there are special requirements for handling the cache servers.

Every Jive deployment larger than a single node is going to require at least a single node to provide

caching services. Within a single data center, high availability can be achieved through the use of three or

more cache servers (two cache servers within a single data center is not supported and can cause data

loss), all of which you configure via the Admin Console.

Caution:

If you are implementing an HA caching configuration with Jive, you must use three or more cache

servers. Two are not supported. This is because each cache PUT operation must succeed on two

different cache servers. Therefore, be aware that HA implementations may result in significant

performance issues to accommodate successful writes across multiple cache servers.

Use jive set cache.hostnames list_of_hostnames to set the cache machine addresses.

You can use the comma separated list of IP addresses or domain names, but be consistent with

the format (use IP addresses or domain names, but not both) and order you use. This list should

be the same on all cache servers, and well as in the Admin Console. For more on setting up cache

servers, see Adding a Cache Server Machine on page 48.

Install the cache server on a machine separate from the web application nodes in the cluster. The cache

server is available to all the web app nodes in the cluster (in fact, you can't create a cluster without

declaring the address of a cache server). For more information about how caching works in the application,

be sure to read In-memory Caching.

Caution: Only one data center can be the active/live system. Therefore, caching requests should

never be sent from a web app node in data center A to a cache node in data center B.

Setting Up the Connection String

The application requires you to add a DNS name or IP address for every cache server deployed with the

application. You set this connection string via the Admin Console: System > Settings > Caches. This

 | Administering the Platform | 13

string is then stored in the core application databases. For more on what must be persisted in the core

application database during a disaster recovery, see Restoring the Database With Persistent Properties.

Because the web application nodes require low latency, the web application nodes must not make cache

requests across geographically-distributed data centers. To deal with this in a multiple data center HA

configuration, you need to correctly set up the DNS name or IP address of the cache server(s). Here's how

you do that:

• If a DNS name is used to specify the location of the cache server(s) (this is the preferred method), the

name(s) must resolve to a cache server short name on the web application nodes in each respective

data center. Using the web node names from the example above, but substituting a DNS short name

ex:(cache01) in the configuration instead of an IP address, the DNS name must resolve to the cache

server cache01-dcA.example.com when requested by either wa01-dcA.example.com or wa02-

dcA.example.com, and must resolve to cache01-dcB.example.com when requested by either of the

web application nodes wa01-dcB.example.com or wa02-dcB.example.com.

• If an IP address is used to specify the location of the cache server(s), it must be a virtual IP address

that resolves to a cache server in the local data center. For example, given web application nodes

wa01-dcA.example.com and wa02-dcA.example.com, both in data center A, and web application

nodes wa01-dcB.example.com and wa02-dcB.example.com in data center B, all pointing to the virtual

IP address 172.16.100.3 in the Admin Console cache server configuration page, the IP address

must resolve to the cache server cache01-dcA.example.com when requested by either wa01-

dcA.example.com or wa02-dcA.example.com, and must resolve to cache01-dcB.example.com when

requested by either of the web application nodes wa01-dcB.example.com or wa02-dcB.example.com.

Configuring the Document Conversion Server for High-Availability

Learn how to configure the Document Conversion server for a single or multiple data center HA

configuration.

Jive gives end users the ability to upload Microsoft Office and Adobe PDF documents to the community for

easy content sharing and collaboration. This Document Conversion service converts uploaded documents

to a standard PDF format and then converts them again to Adobe Flash (.swf files) so that they can then

be viewed in a web browser without needing to open the document's native software application.

The Document Conversion service must run on a separate node in the deployment because it consumes a

significant amount of CPU and memory.

Setting Up the Connection String

The application requires you to add a DNS name or IP address for the Document Conversion server

deployed with the application. You set this connection string via the Admin Console: System > Settings >

Document Conversion. This string is then stored in the core application databases. For more on what

must be persisted in the core application database during a disaster recovery, see Restoring the Database

With Persistent Properties.

You must enter a DNS name (preferred) or an IP address specifying the location of the Document

Conversion server so that when an end user uploads one of the supported document conversion types to

 | Administering the Platform | 14

the community, the web application can first save the document to the storage service, and then send a

request to the Document Conversion service to perform the conversion.

In both of the supported HA configurations (single data center and multiple data center HA configurations),

Jive Software recommends that you configure the Document Conversion service with a DNS name

that resolves to a machine local to that data center. For example, if you have web application nodes

wa01-dcA.example.com and wa02-dcA.example.com, both in data center A, and web application nodes

wa01-dcB.example.com and wa02-dcB.example.com in the data center B, all pointing to the DNS

name conversion-service.example.com via the Admin Console setting, the name must resolve to the

Document Conversion server conversion-service-dcA.example.com when requested by either wa01-

dcA.example.com or wa02-dcA.example.com, and must resolve to conversion-service-dcB.example.com

when requested by either wa01-dcB.example.com or wa02-dcB.example.com.

Additionally, because the Document Conversion service nodes are stateless, you can configure the

service to live behind a load balancer, thereby making the Document Conversion server itself fault-

tolerant. As an example, given the above scenario of two web nodes pointing to a DNS name conversion-

service.example.com, you could configure the DNS name to use round-robin to load balance the requests

across multiple Document Conversion service nodes, or it could resolve to the IP address of a load

balancer, such as an F5 BIG-IP, which itself load balances and provides fault-tolerance across the

Document Conversion services.

Configuring the Core Application Database for High-Availability

The core application database supports the following: Microsoft SQL, Oracle, Postgres, and MySQL.

Note: All of the database information here assumes that you have successfully deployed your

database system of choice in an HA configuration, ensuring that the database server itself is not a

single point of failure.

Caution: You may choose to configure redundant databases and replicate data between them.

Jive Software does not provide database replication configuration or support. Your data center

and/or DBA team must provide database support for you and your configuration. We have seen

customers successfully deploy Oracle RAC and SQL server HA configurations with Jive.

Location of the Web Applications' Database Configuration Information

The web application database configuration information is stored on the web application nodes in an

XML file that lives in Jive home (usually /usr/local/jive/applications/[name of your application]/home/

jive_startup.xml. To learn how to set up the core application database string on the web application nodes,

see Configuring the Web Application Servers for High-Availability. For more on what must be persisted

in the core application database during a disaster recovery, see Restoring the Database With Persistent

Properties.

Supported Core Application Databases

Microsoft SQL Server Jive supports the JTDS database driver for

communication between the Jive instance and

 | Administering the Platform | 15

Microsoft SQL Server. While Jive does not

specifically perform load or functional tests

against Microsoft SQL Server in a cluster/failover

configuration, the JTDS driver does appear to

support SQL Server clustering.

Jive does not currently support the Microsoft JDBC

driver. Jive is aware of and is actively working

with customers who have deployed Jive in an HA

configuration using Microsoft SQL Server.

Oracle Jive supports the OCI database driver for both

the core web application and the Activity Engine

application, which is supported by Oracle with their

Oracle RAC database system deployments. While

Jive does not specifically perform load or functional

tests against an Oracle in a RAC cluster/failover

configuration, the OCI driver does appear to support

Oracle RAC. Jive is aware of and is actively working

with customers who have deployed Jive in an HA

configuration using Oracle RAC.

Postgres Jive supports Postgres 8 and Postgres 9. The

latest version of Postgres, version 9, supports

two different types of high availability: hot

standby/streaming replication and warm standby/

log shipping which, in theory, would allow for

transparent and automatic failover, assuming there

is a way to automatically redirect all traffic from the

live production database server to the hot standby

backup server. Jive Software is not aware of any

customers who have deployed against a Postgres

instance configured in this manner. If a mechanism

exists for failing over a database server from one

node to another, or from one data center to another,

without disrupting the web application nodes, Jive

will support the configuration.

MySQL Similar to Postgres, there are multiple ways of

deploying a highly available MySQL database

system. Also similar to Postgres, Jive Software is

not aware of any customers who have deployed

against a MySQL instance configured in this

manner. If a mechanism exists for failing over a

 | Administering the Platform | 16

database server from one node to another, or

from one datacenter to another, without disrupting

the web application nodes, Jive will support the

configuration.

Configuring the Analytics Database for High-Availability

The Analytics database has special HA considerations because its connection string is stored in the core

application's database.

Note: All of the database information here assumes that you have successfully deployed your

database system of choice in an HA configuration, ensuring that the database server itself is not a

single point of failure.

The Analytics service supports the following database types:

• Oracle

• Postgres

Location of the Analytics Database Configuration Information

The Analytics database connection string, username, and password are stored in a table in the core

application database in an encrypted format (not in an XML file).

Setting Up the Connection String

The application requires you to add a DNS name or IP address for the Analytics database server deployed

with the application. You set this connection string via the Admin Console: Reporting > Settings >

Analytics. This string is then stored in the core application databases. For more on what must be persisted

in the core application database during a disaster recovery, see Restoring the Database With Persistent

Properties.

In the event of a failover, there are specific ways that the application uses this connection string to

determine which Analytics server to failover to. Therefore, be especially careful when setting up the

connection string as follows:

• If a DNS name is used in the connection string (this is the preferred method), the name must resolve

to an Analytics database server that is resolvable and reachable by the web application nodes in each

respective data center (A or B). Using the web node names, but substituting a DNS name (analytics-

virtual.example.com) in the connection string instead of an IP address, the DNS name must resolve

to the Analytics database server analytics01-dcA.example.com when requested by either wa01-

dcA.example.com or wa02-dcA.example.com and must resolve to analytics01-dcB.example.com when

requested by either of the nodes wa01-dcB.example.com or wa02-dcB.example.com.

• If an IP address is used in the connection string, it must be a virtual IP address that points to the

Analytics database server that's available from both data centers. For example, given web nodes

wa01-dcA.example.com and wa02-dcA.example.com, both in the data center A and web nodes wa01-

dcB.example.com and wa02-dcB.example.com in data center B, all pointing to the virtual IP address

 | Administering the Platform | 17

172.16.100.2 in the Analytics database connection string, said IP address must resolve to the Analytics

database server analytics01-dcA.example.com when requested by either wa01-dcA.example.com or

wa02-dcA.example.com and must resolve to analytics01-dcB.example.com when requested by either of

the web application nodes wa01-dcB.example.com or wa02-dcB.example.com.

Configuring the Activity Engine Database for High-Availability

The Activity Engine database supports several types of databases. For the database connection string, you

must use a dynamic link, which can be either an IP address or a domain name.

Note: All of the database information here assumes that you have successfully deployed your

database system of choice in an HA configuration, ensuring that the database server itself is not a

single point of failure.

The Activity Engine service supports the following database types:

• SQL Server

• Oracle

• Postgres

• MySQL

Location of the Activity Engines' Database Configuration Information

The Activity Engine nodes maintain their database configuration information in the core application

database. The database connection string can either be an IP address or a domain name, but should be

dynamic in case of a failure at the database layer.

Setting Up the Connection String

The application requires you to add a DNS name or IP address for the Activity Engine database server

deployed with the application. You set this connection string via the Admin Console: System > Settings >

Activity Engine. This string is then stored in the core application databases. For more on what must be

persisted in the core application database during a disaster recovery, see Restoring the Database With

Persistent Properties.

In the event of a failover, there are specific ways that the application uses the connection string to

determine which Activity Engine database server to failover to. Therefore, be especially careful when

setting up the connection string as follows:

• If a DNS name is used in the connection string (this is the preferred method), the name must resolve

to an Activity Engine database server that is resolvable and reachable by the web application nodes

in each respective data center (A or B). Using the web node names, but substituting a DNS name

(activityeng-virtual.example.com) in the connection string instead of an IP address, the DNS name must

resolve to the Activity Engine database server acteng01-dcA.example.com when requested by either

wa01-dcA.example.com or wa02-dcA.example.com and must resolve to acteng01-dcB.example.com

when requested by either of the nodes wa01-dcB.example.com or wa02-dcB.example.com.

 | Administering the Platform | 18

• If an IP address is used in the connection string, it must be a virtual IP address that points to the

Activity Engine database server that's available from both data centers. For example, given web

nodes wa01-dcA.example.com and wa02-dcA.example.com, both in the data center A and web nodes

wa01-dcB.example.com and wa02-dcB.example.com in data center B, all pointing to the virtual IP

address 172.16.100.2 in the Activity Engine database connection string, said IP address must resolve

to the Activity Engine database server acteng01-dcA.example.com when requested by either wa01-

dcA.example.com or wa02-dcA.example.com and must resolve to acteng01-dcB.example.com when

requested by either of the web application nodes wa01-dcB.example.com or wa02-dcB.example.com.

Configuring an On-Premise Search Service for High-Availability

To create an on-premise HA search service, you will need separate search nodes configured as part of the

larger HA deployment.

The following diagram shows the simplest HA configuration for on-premise search. Jive has been deployed

in a wide variety of HA configurations. This is only an example of an HA search configuration. Your

configuration may vary depending on your specific requirements.

Note: The ingress replicator and search nodes have built-in health checks via host:port/

loadbalance/eligible. Therefore, the load balancer can maintain the pool of available nodes via the

health check and then round-robin requests across available nodes. In this way, the load balancer

can detect any failures of ingress replicator or search nodes.

 | Administering the Platform | 19

 | Administering the Platform | 20

Capacity and Scaling Considerations

Understanding how failures occur will help you determine the number of on-premise search nodes you will

need in your HA deployment.

There are two types of on-premise search failures that can occur:

Search Failure In this case, new search requests will not be

serviced during an outage. To design your Jive

configuration to guard against this, you'll need to

have more than one search broker and have them

on separate nodes. This also means that you'll

need to deploy an ingress replicator, which can be

co-located with each of the search brokers.

Ingress Failure In this case, new content will not be indexed during

an outage. To design your Jive configuration to

guard against this, you'll need to deploy multiple

ingress replicators and on separate nodes. Each

can be co-located with a search broker, if desired.

Note that the protection against index failure is not

absolute; for example, while new content continues

to be indexed during an outage, a small amount

of content that was created just before the outage

could fail to be indexed until the ingress replicator

comes back online.

Generally speaking, it makes sense to keep capacity considerations separate from your decision about

your HA search configuration. Having additional search brokers adds capacity to services search requests,

but a deployment would need to be very large and very active before a single search broker could not

handle the requests. In that case, it would be simpler to add a CPU rather than a new search broker.

The key capacity consideration is the amount of memory available to the search brokers. Remember that

the data is not shared, so each search broker needs to have enough memory to effectively handle the size

of the index. Therefore, if HA is not needed, adding a second search broker for the purpose of scaling is a

big investment because you would need to commit more memory to it.

For capacity planning guidelines of your Jive configuration, see Deployment Sizing and Capacity Planning.

Required Nodes for an On-Premise HA Search Service

To configure your on-premise search nodes for HA, you'll need to split the search service from the ingress

replicator so that each service can be made redundant. You will need a load balancer to direct traffic to

each set of services. In this example, we describe four nodes: two for ingress and two for search. Your

configuration may vary depending on your requirements.

It is okay to run an ingress replicator service on the same host as the search service.

 | Administering the Platform | 21

Table 1: On-Premise HA Search Configuration Node Requirements

Search

Component

Nodes Required Description

Ingress replicator 2 separate nodes The ingress replicators journal everything to disk to guarantee all

ingressed activities (e.g., new content or content updates) will be

delivered to a search node at least once.

Search service 2 separate nodes The search nodes handle incoming search queries and return

search results. You can see a diagram of how this works here.

HA Search Setup Overview

When you set up the Jive platform for on-premise HA search, you will perform several steps in a specific

sequence.

Note: As of Jive 7.0, the search index rebuild process has been improved so that you no longer

have to rebuild the search index on one node and then copy it to all of the other search nodes. In

versions 7.0+, the ingress replicators automatically send rebuild traffic to all search nodes. Because

of this change, all of the search nodes must be available before starting a search rebuild. This

ensures that the search index on the search service nodes are always consistent.

In the following topics we will walk you through an example of an HA search configuration setup that uses

the following ports and hosts. Your configuration may vary depending on your requirements.

• 2 search nodes: search01.yourdomain.com, search02.yourdomain.com, port 30000

• 2 ingress replicator nodes: ir01.yourdomain.com, ir02.yourdomain.com, port 29000

• 1 haproxy node: haproxy.yourdomain.com, load balancing the search nodes on port 20000 and load

balancing the ingress replicator nodes on port 19000

Step What You're

Installing

Required or

Optional

Install Instructions

1 -- Required Understand the supported HA search configurations.

2 -- Required Determine how many nodes you'll need in your HA search

configuration. Typically, this will include two search nodes

and two ingress replicators, but you may have more of each,

depending on your requirements.

3 Application

RPM

Required Install the Jive Linux package on each node of your HA search

configuration (the search servers and the ingress replicator

servers).

4 Search

servers

Required Add another search server to your configuration.

 | Administering the Platform | 22

Step What You're

Installing

Required or

Optional

Install Instructions

5 Ingress

replicators

Required Add another ingress replicator server to your configuration.

6 HA search

proxy

Required Add an HA proxy to your configuration.

7 -- Required Include a json services file on each search server in the

configuration.

Installing One or More Search Servers

Use these steps to add a search server to your on-premise HA search configuration.

1. Install the Jive Linux package on the search servers that will be part of your HA search service

configuration.

2. Enable the search service to start by typing the following command as the jive user:

jive enable search

3. Verify that the port is correct for your setup in the main-args.properties file (located in /usr/local/jive/

services/search-service/). In our example, it would look like this:

PORT=30000

4. Restart the search service using the following command as the jive user:

jive restart search

Installing One or More Search Ingress Replicators

Use these steps to add an ingress replicator server to your on-premise HA search configuration.

1. Install the Jive Linux package on the ingress replicator servers that will be part of your HA search

service configuration.

2. Enable the ingress replicator to start by typing the following command as the jive user:

jive enable ingress-replicator

3. Verify that the following properties in the main-args.properties file (located in /usr/local/jive/services/

ingress-replicator-service/). In our example, they would look like this:

PORT=29000
REPLICATE_INGRESS_TO_THESE_COMMA_SEPARATED_HOST_COLON_PORT_TUPLES=guaranteed:all:search01.yourdomain.com:30000,guaranteed:all:search02.yourdomain.com:30000
REPLICATE_REBUILD_TO_THESE_COMMA_SEPARATED_HOST_COLON_PORT_TUPLES=search01.eng.yourdomain.com:30000,search02.eng.yourdomain.com:30000
REPLICATE_INDEX_MANAGE_TO_THESE_COMMA_SEPARATED_HOST_COLON_PORT_TUPLES=search01.eng.yourdomain.com:30000,search02.eng.yourdomain.com:30000

4. Restart the ingress replicator service using the following command as the jive user:

jive restart ingress-replicator

 | Administering the Platform | 23

Setting Up the HA Search Proxy

To configure a redundant HA search environment, you will need a proxy server to load balance requests to

each search server and ingress replicator.

Below is an example of two search nodes, two ingress nodes, and one proxy that load balances each pair.

We also recommend setting up one reporting endpoint for the load balancer itself.

The proxy should be running on its own server. This example uses CentOS and haproxy. You may use

other proxy services depending on your requirements.

1. Install a proxy server using yum: yum install haproxy.

2. Set the proxy so that it starts up automatically whenever the server restarts (chkconfig haproxy

on).

3. Edit the proxy's config file (located in /etc/haproxy/haproxy.cfg) as follows and save the changes. The

proxy listens on port 20000 for search and on port 19000 for ingress. It also exposes a status UI on port

8085.

 frontend main
 bind haproxy.yourdomain.com:20000,haproxy.yourdomain.com:19000
 acl ingress-r dst_port 19000
 use_backend ingress-replicator if ingress-r
 default_backend search

 backend search
 balance roundrobin
 option httpchk GET /ping
 server search01 search01.yourdomain.com:30000 check
 server search02 search02.yourdomain.com:30000 check

 backend ingress-replicator
 balance roundrobin
 option httpchk GET /ping
 server ir01 ir01.yourdomain.com:29000 check
 server ir02 ir02.yourdomain.com:29000 check

 listen status haproxy.yourdomain.com:8085
 stats enable
 stats uri /

4. Restart the haproxy. (The control scripts are located in /etc/init.d/haproxy).

5. Test the setup by sending search queries through curl and ensuring they are showing up in the logs of

the destination machines.

6. In the application's Admin Console, go to System > Settings > Search and update the search service

host field with haproxy.yourdomain.com and the search service port to 20000.

7. Restart the application.

Services Directory for HA Search

The search service relies on a file named serviceDirectory.json. This file should be identical for all of the

search servers (not the ingress replicators) in your HA configuration.

 | Administering the Platform | 24

Below is a sample file.

• All hosts and ports point to load balancer-exposed addresses.

• The entries for "directory" and "search" should all point to the load balancer address for search.

• The "activityIngress", "rebuildSearchIndex", and "searchIndexManage" entries should point to the load

balancer address for the ingress replicator.

• If you are connecting only one Jive instance to your HA search configuration, you do not

need to modify the second section of serviceDirectory.json (tenantSpecificServiceDirectory).

tenantSpecificServiceDirectory allows you to uniquely configure multiple instances to a shared search

service.

{
 "defaultServiceDirectory" : {
 "directory" : {
 "host" : "haproxy.yourdomain.com",
 "port" : 20000
 },
 "search" : {
 "host" : "haproxy.yourdomain.com",
 "port" : 20000
 },
 "searchIndexManage" : {
 "host" : "haproxy.yourdomain.com",
 "port" : 19000
 },
 "rebuildSearchIndex" : {
 "host" : "haproxy.yourdomain.com",
 "port" : 19000
 },
 "activityIngress" : {
 "host" : "haproxy.yourdomain.com",
 "port" : 19000
 }
 }
}

 | Administering the Platform | 25

Adding an On-Premise HA Search Server

There are two basic steps to adding (or removing) a search node in an already existing HA search

environment: introducing the new search node and then configuring the ingress replicators to recognize the

new node. The following example assumes you have two search nodes and you will add a third.

Adding a New Search Node to the Configuration

Here's how to add a new search node to your configuration:

1. Take all ingress replicators out of the load balancer rotation.

2. Wait for all ingress replicators to deliver pending activities. To do this, from the command line run: curl

http://ir0x.yourdomain.com:29000/logging/metric/listCounters | grep InQueue

3. This should return something like the following, which indicates that you are replicating to

search01.yourdomain.com:30000 and search02.yourdomain.com:30000, and that the InQueue metric is

0.0, which means that all activities have been delivered:

{"key":"counter>com.jivesoftware.service.activity.stream.replicator.ActivityStreamReplicator>search01.yourdomain.com_30000>InQueue","metric":0.0},
{"key":"counter>com.jivesoftware.service.activity.stream.replicator.ActivityStreamReplicator>search02.yourdomain.com_30000>InQueue","metric":0.0}

4. Shut down the ingress replicators (jive stop ingress-replicator).

5. Install the third search service 3 (search03.yourdomain.com). For instructions, see Installing One or

More Search Servers.

6. Update the ingress replicator settings for the additional search node (as described below in Point to the

New Search Node).

7. Then, there are a couple of ways to rebuild the index. Here are the options:

Option Description

If the index is large (multiple gigabytes): It's faster to copy the active search index

from search service 1 or 2 to the new search

service 3. You can find the active search

index by looking in /usr/local/jive/services/

search-service/main-args.properties file for

CONTENT_SEARCH_HOME_DIRECTORY=var/

data/contentSearch/. This property lists the

location of the search indexes.

If the index is small (less than two gigabytes)

or you do not care how long the rebuild takes:

First, complete steps 8-10; then start a rebuild

from the Admin Console (Admin Console:

System > Settings > Search and click Rebuild

Index).

8. Start search service 3 (jive start search).

9. Add the third search node to your load balancer.

10.Finally, start up all of the ingress replicators and make sure all of the search services are running (jive

start ingress-replicator).

 | Administering the Platform | 26

Point to the New Search Node

After you've successfully added the new node as described above, you'll need the other nodes to point to

the new search service node. Here's how to do that:

1. In /usr/local/jive/services/ingress-replicator-service/, re-configure ingress replicator 1 and 2 to include

search service 3. Set the load balancer to forward the ingress service to all machines holding the

 | Administering the Platform | 27

ingress replicator, and the ingress replicators to forward to all machines where the search service runs.

The relevant parameters in the main-args.properties file should look something like this:

PORT=29000
REPLICATE_INGRESS_TO_THESE_COMMA_SEPARATED_HOST_COLON_PORT_TUPLES=guaranteed:all:search01.yourdomain.com:30000,guaranteed:all:search02.yourdomain.com:30000,guaranteed:all:search03.yourdomain.com:30000
REPLICATE_REBUILD_TO_THESE_COMMA_SEPARATED_HOST_COLON_PORT_TUPLES=search01.eng.yourdomain.com:30000,search02.eng.yourdomain.com:30000,search03.yourdomain.com:30000
REPLICATE_INDEX_MANAGE_TO_THESE_COMMA_SEPARATED_HOST_COLON_PORT_TUPLES=search01.eng.yourdomain.com:30000,search02.eng.yourdomain.com:30000

2. Restart the ingress replicator services (jive restart ingress-replicator).

3. Add the ingress replicator services back into the load balancer configuration.

 | Administering the Platform | 28

Failover Behavior of HA Servers
This section describes the expected failover and data recovery process for each component in a highly

available Jive configuration.

System Failover

The length of an outage will depend on several factors.

In the event of a failover, the length of your outage will depend on whether or not the system can correctly

redirect everything to the passive system, how long it takes for either the manual or automatic processes

to run where you're switching DNS/IP addresses, and the time it takes to bring up the application servers in

the passive-now-active system.

Therefore, do your best to ensure that you've set up everything correctly, as described in the Configuring

Jive for High-Availability section.

If you've set up the configuration so that all of the nodes correctly redirect to the passive system, here's

what will happen during a failover:

Single Data Center Community users would not see any disruption.

Multiple Data Center The length of disruption to end users would be

between five and ten minutes, during which time,

users would see a maintenance page when

attempting to view community pages. Downtime

depends, of course, on how fast you have set

up database replication and how quickly your

community administrator(s) react to the outage of

Data Center A.

To learn how to start up the system after a failover, be sure to read Starting Up After a Failover.

Failover and Data Recovery in the Caches

If/when a cache server becomes unavailable, the web application nodes will continue indefinitely to attempt

to communicate with the cache server until it is brought back online.

A web application node will determine that a cache server is unavailable after 20 consecutive failed

requests to the cache server. The web app node will then wait for two seconds before attempting to

communicate again with that cache server. This process will continue indefinitely until the failed cache

server is brought back online. In the meantime, the web app nodes will automatically redirect to the next

available cache server(s).

If the cache server is unavailable at the startup of a web application node, the web node will use local

caching. The web app node will continue to try to communicate with the external cache server, and will do

so indefinitely, until the external cache server is brought back online.

Failover and Data Recovery in the Activity Engine

Understand how the Activity Engine handles activity ingress, egress, and failures.

 | Administering the Platform | 29

Activity Ingress

In a clustered Jive configuration, when a Jive web application node sends an activity, it selects an

appropriate Activity Engine node to which to send the activity. The web app node selects an Activity Engine

node based on the following criteria:

User affinity All Jive web apps in a cluster attempt to route

activity from a particular user to the same Activity

Engine node.

Sensitive ordering User affinity is based on node ordering. We

recommend keeping consistent the list of Activity

Engine nodes defined in the Activity Engine setup.

Failover behavior If an Activity Engine node becomes unavailable,

the web application bans it and reroutes applicable

users to the next node in the list. The new routing

becomes "sticky" for a small number of subsequent

requests (30) before it is discarded and the original

route is again attempted.

After the web application selects an available Activity Engine node, the web application attempts the

delivery. If it fails for any reason, the activity is journaled and attempted again later (potentially against a

different node). Delivery failure may occur due to the following:

 | Administering the Platform | 30

Unavailable node The node is unreachable or otherwise unavailable

between its selection and activity delivery.

Activity not written to the Activity Engine

database

The node is unable to write the activity to the

database for any reason.

Activity not queued for processing The node is unable to add the activity to its

processing queue for any reason.

Streams Durability

Each Activity Engine node is backed by its own Lucene stream service. While ingress remains unchanged,

each node is responsible for replicating its processed data to all other nodes in the Activity Engine cluster.

Each node is made aware of its siblings during the web application's registration process.

The replication procedure works as follows:

Disk queue Fully-processed activities, as well as events (for

example, reads, hides, moves), are queued to disk

in a simple pipeline destined for all siblings.

Connection pool Each Activity Engine node establishes up to 10

connections to each of its siblings on the same

port used by the web app. Note: Each node will

therefore accept and establish up to 10 x #-of-

siblings additional connections to handle the

replication requirement.

Activity Engine Failover and Recovery

If an Activity Engine node goes down:

Unprocessed activity is in limbo There is no way to reclaim activities that are still

queued on disk and/or activities/events in the

replication queue. You must bring the failed node

back online for its queue to be processed.

Queues lost to disk failure are recoverable In the event of a complete disk failure, you can

recover unprocessed activities by running a stream

rebuild on all nodes. While this guarantees that

the unprocessed activities are correctly reflected

in all indexes, it is a resource-intensive procedure.

Therefore, Jive Software recommends avoiding this

scenario if possible.

Lucene is completely mirrored Because each node has its own complete Lucene

index, no stream data goes missing or becomes

 | Administering the Platform | 31

unreachable. All other data (e.g., follows and email

notifications) are persisted to the database and are

unaffected by an Activity Engine node failure.

Recoverable cross-communication If an Activity Engine node is unable to reach one

of its siblings during replication, activities/events

destined for that sibling are pushed to a "retry"

queue where they are reattempted at a later time.

After a failed node recovers, replication to that node

should resume within approximately 1 minute; so

there will be a brief period of stream inaccuracy on

the affected node.

After an Activity Engine node recovers:

Processing resumes The Activity Engine node will continue processing

its disk queue, as well as activities/events in the

replication queue. No further action is required.

Corrupted queues In the event that the failure has corrupted one or

more disk queues and/or activities/events in the

replication queue, those queues are copied off

with the suffix ".corrupt" and can potentially be

copied and analyzed. But there is no way to recover

corrupt queues. If your replication queue is corrupt,

we strongly recommend that you run a stream

rebuild on all Activity Engine nodes.

If you decommission an Activity Engine node:

Unprocessed activity can be recovered If you decommission an Activity Engine node

with unprocessed activity in its queues, then

we recommend you run a stream rebuild on all

nodes. This is a resource-intensive procedure,

but we recommend it over attempting to move the

unprocessed queue data to another node.

Cross-communication adjusts accordingly When you remove an Activity Engine node from

the web app's Activity Engine configuration, all

remaining nodes are made aware of the change.

Replication to the decommissioned node ceases

immediately.

If you add or re-add a node:

Cross-communication adjusts accordingly When you add an Activity Engine node to the web

app's Activity Engine configuration, all current

 | Administering the Platform | 32

nodes are made aware of the change. Replication

to the commissioned node begins immediately.

Stream rebuild is initiated When an Activity Engine node is registered with the

web app, it is able to detect whether it was a new

addition (or re-addition). The node flags itself for a

stream rebuild to ensure that its index contains all

required stream data.

Note that, while we have made extra efforts to ensure that consistency is maintained automatically during

the management of an Activity Engine cluster, in the event of any unexpected inconsistency or missing

data, you can correct the issue by initiating a stream rebuild on the affected node(s). The Activity Engine

node remains completely accessible while performing a rebuild, during which time streams will fill with

users' newest activity first. In addition, Jive supports complex "in/out" configurations which play a large part

in activity ingress.

Activity Egress

Because each node maintains its own Lucene index, if an Activity Engine node is in the process of

performing a stream rebuild, it is possible for users routed to a particular Activity Engine node to have

partly-diminished streams. This state is temporary and resolves itself automatically (similar to a search or

browse index rebuild). The most recent stream activity will always be available first, and in no event will

any user activity ever be permanently lost. There are some background tasks which are only performed

by an elected node. However, as of Jive 6.0, the "per-user stream rebuild" task is no longer applicable and

has been removed. Therefore, the only tasks requiring node election are upgrade migrations. In addition,

Jive 6.0+ supports complex "in/out" configurations which play a large part in activity egress.

Failover and Data Recovery in the Document Conversion Service

If your Document Conversion server fails, you only lose the ability to convert new documents.

If the Document Conversion server fails, you do not lose all the previously converted documents. Once

documents are converted, they live forever in your file storage. So if your Document Conversion server

fails, you only lose the ability to convert new documents, until you bring the service back online.

Failover and Data Recovery in Storage

Any Jive deployment beyond a simple pilot or proof-of-concept must use file system storage, where each

web application node reads and writes from a shared disk system via NFS.

Jive supports two types of binary file storage:

Database This is the default binary file storage.

File System This is the preferred binary file storage.

 | Administering the Platform | 33

External Storage Failover in a Single Data Center HA Configuration

In a single data center HA configuration, it's assumed that the external storage is redundant within the data

center. For an illustration, see Designing a Single Data Center HA Configuration.

In the event of a local (within the single data center) or a catastrophic (the entire data center) failure, it

is assumed that the storage layer that Jive is configured with is redundant and that recovery is handled

transparently by the underlying storage system.

External Storage Failover in a Multiple Data Center HA Configuration

In a multiple data center HA configuration, it's assumed that the external storage is being replicated across

the data centers transparently. For an illustration, see Designing a Multiple Data Center HA Configuration.

Failover and Data Recovery in the Core Database

Understand how you can prepare for disaster recovery with the Jive Core database.

Caution: You may choose to configure redundant databases and replicate data between them.

Jive Software does not provide database replication configuration or support. Your data center

and/or DBA team must provide database support for you and your configuration. Customers have

successfully deployed Jive to Oracle RAC, SQL Server Clustering and other HA configurations.

Core Database Failover in a Single Data Center HA Configuration

Refer to Configuring the Core Database for HA to learn more about a single data center HA configuration.

Core Database Failover in a Multiple Data Center HA Configuration

Disaster Recovery (DR) architecture varies greatly from data center to data center. In a strategy where all

systems are fully replicated to a DR facility, you may be able to architect the Jive Platform as you would

with a Single Data Center HA Configuration. In many cases, however, the DR strategy is more manual and

requires a Multiple Data Center HA Configuration.

The following represents two possible DR strategies.

Create Backup at Remote Location (Simplest DR

Strategy)
If a recent full backup of the database is available

at a remote location, it is possible to recover

the system to the point in time of the available

backup. Upon declaration of a disaster, perform the

following:

1. Set up a new cluster of application servers and

point them to a new empty database at the

recovery facility.

2. After completion of initial setup, save specific

property values from the new database's

jiveProperty table somewhere or copy them to

a backup table. For more on which properties

 | Administering the Platform | 34

need to persist, see Persistent Properties for a

Database Recovery.

3. Restore the database backup over the newly

created database.

4. Apply the properties that should persist (as

determined in Step 2) from the new database

to the restored database's jiveProperty table.

For more on this, see Persistent Properties for a

Database Recovery.

5. Restart the application server.

Note: Data loss in the event of a disaster

can be minimized by pushing incremental

backups, and/or transaction \ write-ahead

logs to the remote facility. Point-in-time

recovery may be performed up to the point

of the disaster if backups are available.

Use Cold/Warm State Servers Streaming replication, or Write-Ahead Logging

(WAL)/log shipping, maintains a recent copy of the

database at the remote facility. You need to make

sure a cluster of application servers are already

set up and attached to an empty database. Upon

declaration of disaster, the replicated database

should replace the empty database with specific

values in jiveProperty persisted to reflect the DR

environment. For more on this, see Persistent

Properties for a Database Recovery.

It is important to consider which properties should

be replaced with values from the original production

site, and which values should reflect values of

the new facility. The persisted values depend on

system configuration, as well as any customizations

that could impact the jiveProperty table. Review,

validation, and live testing of a system failover

will eliminate any potential issues that could arise

during an actual disaster.

Failover and Data Recovery in the Analytics Database

The Analytics database connection string, user name, and password are stored in a table in the core

application database in an encrypted format (not in an XML file). In the event of a failure, you want to be

sure the web app nodes are calling the correct Analytics database server.

 | Administering the Platform | 35

Caution: You may choose to configure redundant databases and replicate data between them.

Jive Software does not provide database replication configuration or support. Your data center

and/or DBA team must provide database support for you and your configuration. Customers have

successfully deployed Jive to Oracle RAC, SQL Server Clustering and other HA configurations.

Analytics Database Failover in a Single Data Center HA Configuration

In a single data center HA configuration, if Analytics database 1 fails over to Analytics database 2, this

failure is transparent to the web application nodes due to the database driver layer controlling traffic

between the web app nodes and the analytics database. So if the Analytics database 1 failed, community

users would not notice the failure because the driver would automatically redirect web app node requests

over to Analytics database 2.

Analytics Database Failover in a Multiple Data Center HA Configuration

The Analytics database server connection string, user name, and password are stored in a table in the

core application database in an encrypted format (not in an XML file). Because of this, how you set up the

connection string affects how the web application nodes call and resolve the Analytics database server. In

the event of a failure in a multiple data center HA configuration, you want to be sure the web app nodes

are calling the correct Analytics database server. Therefore, be especially careful when setting up the

Analytics database connection string.

Failover and Data Recovery in the Search Service

In the case of a failure, your ingress replicator(s) or search service nodes may be unreachable. This topic

describes what happens during an outage.

Note: To avoid non-recoverable disk failures, Jive Software recommends that you configure the

ingress replicator journals and search service indexes so that they are written to durable storage.

For each ingress replicator, allocate at least 20GB for journal storage. For each search service,

allocate at least 50GB for index storage. Monitor these storage volumes for remaining capacity,

maintaining 25% free capacity.

In the case of a failure of any given node in your HA search configuration, here's what happens:

Ingress replicator node fails The ingress replicator journals everything to disk to

guarantee all ingressed activities will be delivered

at least once. If the service fails or is stopped, it will

send any remaining journaled events when it starts

back up. If the service cannot come back up due

to a non-recoverable disk failure, then a full rebuild

will be required (see Rebuilding an On-Premise

HA Search Service). If both ingress replicators fail

(or you have only one and it fails), for the duration

of the outage no new content will be indexed; but,

when the ingress replicator comes back online,

 | Administering the Platform | 36

the search service will catch up with the indexed

content (due to local caching on the web application

nodes); therefore, the search service will not have

missed anything.

Search service node fails If search service 1 or 2 is offline for any reason,

the ingress replicator will retain the undelivered

activities. When search service 1 or 2 is restored

to a healthy state, the undelivered activities will

be sent to the restored service. While previously

undelivered activities are being fed into the newly

restored service, the search indexes will be out

of sync. After all undelivered activities have been

received by the restored service, the indexes will

be synced. If the service cannot be restored due

to a non-recoverable disk failure, then you'll need

to remove and re-add the affected search service

(see Adding an On-Premise HA Search Service

Node). If you leave a search service down for a

very long period of time (e.g., many weeks), you

may run out of disk space because the ingress

replicator services will be persisting to disk until

the configured search service is restored. If you

don't plan to restore the offline search service, then

remove the offline search service from all ingress

replicator configuration files and restart the ingress

replicators.

Recovering Jive After a Failure
This section describes which system properties, files, and directories need to be restored when recovering

Jive after a failure.

You should configure Jive for High-Availability. Your HA configuration should enable you to automatically

or manually start up after a failover. The following provides system properties, files, and directories that

need to be restored in the case of a failure without any failover configuration:

• On the core application database nodes, restore the properties in the jiveProperty table that need to be

persisted. For a list of these properties, see Restoring the Database With Persistent Properties.

• On the web application nodes, restore the files and directories in /jiveHome that need to be recovered.

For a list of these files, see Restoring the Web Application Server File System.

Restoring the Web Application Server File System

The web application server file system contains certain files and directories that should persist in a disaster

recovery situation.

 | Administering the Platform | 37

You should prepare for a disaster situation by configuring the web application servers for high-availability.

If you don't have a warm standby data center, you should copy the following files and directories found in /

usr/local/jive to the same location in your new web application servers:

• applications/*/home/search

• applications/*/home/themes

• applications/*/home/attachments/cache

• applications/*/home/images/cache

• applications/*/home/documents/cache

• applications/*/home/cache/jiveSBS

• applications/*/home/jms

• applications/*/home/jive_startup.xml

• applications/*/home/attachments/*.txt

• applications/*/home/images/*.bin

• *.pid

• applications/saasagent

• tomcat/lib/postgresql*.jar

• etc/httpd/sites/proxies/maint.con

Tip: If you have a text extraction location set up for search as shown in the Post-installation Tasks,

you should copy that directory over to the new system to save time while reindexing.

Restoring the Database With Persistent Properties

In the jiveProperty table, there are several properties that may need to be changed when restoring data in

a Disaster Recovery (DR) situation.

The following first table provides a list of properties that may need to be changed when restoring your Core

database. In the second table you can see the wildcards, for example %jiveURL%, that you can use to find

multiple or variable properties that also may need to change.

Property Definition/Notes

cache.clustering.enabled Enables caching in a clustered environment. Values are either true or false.

This should be set to true unless the new instance (disaster recovery instance)

does not have clustering (more than one web application node) enabled, in which

case this value should be set to false.

jive.storageprovider.FileStorageProvider.rootDirectorySpecifies the path to the mount point for binary storage if you configured your

system to store binary content on the file system vs. the database, which is the

default. This should be the same across datacenters, but it can change if the

mount points are different.

jive.storageprovider.cache.enabledIf you use NFS for your binstore file system, then you should set this property to

false to prevent excessive traffic on the network from caching the NFS mounts.

 | Administering the Platform | 38

Property Definition/Notes

jive.auth.forceSecure Values are either true or false. Set this value to true as part of forcing all

traffic to the instance over SSL. You only need to change this value if the failover

data center has a different HTTP configuration, for example if SSL is not enabled.

jive.master.encryption.key.nodeThis property represents one of the node.id files in the cluster. Remove the

value in the event of a failover. Upon restart, the web applications will populate

automatically with the correct value.

antivirus.virusScannerUri The URI of the virus scan server. This may change if you failover to a new

datacenter. The URI must be in one of the following formats:

• ClamAV: tcp://hostname/clamav

• McAfee: icap://hostname:port/RESPMOD

The following table shows wildcards that extract additional properties. Each wildcard includes an example

of properties that were extracted and may change during a failover. Your actual results will vary depending

on how your system is set up.

Wildcard Notes

jive.cluster.jgroup.servers.address

%
Remove all values in the event of a failover. Upon restart, the web applications will

populate this table automatically.

For example, remove the values in the following property:

jive.cluster.jgroup.servers.address.8aa5ce1c-f15b-4d2e-ba90-f9cf424af3b2

jive.cache.voldemort.servers.address

%
If your use a DNS name or a virtual IP, then the values of extracted properties do

not need to change. However, if the IP address of the cache server in the new

data center is different than the IP address of the cache server in the failed data

center, then this property and any of its children should be updated with the valid

IP address or DNS name.

For example, you may need to update the value in

jive.cache.voldemort.servers.address.1

 | Administering the Platform | 39

Wildcard Notes

__jive.analytics.% If you use a DNS name or a virtual IP, then the values of extracted properties

do not need to change. However, if the IP address of the cache server in the

new data center is different than the IP address of the cache server in the

failed data center, then the __jive.analytics.database.serverURL

property should be updated with the valid IP address or DNS name. In addition,

you may need to update __jive.analytics.database.username and

__jive.analytics.database.password if they change, but generally they

wouldn't.

Extracted properties that might change:

• __jive.analytics.database.serverURL

• __jive.analytics.database.username

• __jive.analytics.database.password

jive.dv.% The jive.dv.service.hosts may need to change if the IP address or domain

name changes for the new data center, making it different from the failed data

center.

Extracted properties that might change:

• jive.dv.service.hosts

%smtp% The mail.smtp.host or mail.smtp.port may need to change if the host or

port changes for the new data center making it different from the failed data center.

Extracted properties that might change:

• mail.smtp.host

• mail.smtp.port

%ldap% The ldap.host, ldap.port or ldap.sslEnabled may need to change if the

values change for the new data center, making them different from the failed data

center.

Extracted properties that might change:

• ldap.host

• ldap.port

• ldap.sslEnabled

 | Administering the Platform | 40

Wildcard Notes

%checkmail% The checkmail.host, checkmail.port or checkmail.protocol may need

to change if the values change for the new data center, making them different from

the failed data center.

Extracted properties that might change:

• checkmail.host

• checkmail.port

• checkmail.protocol

%activity% The jive.activitymanager.endpoints may need to change if the value

changes for the new data center, making it different from the failed data center.

Extracted properties that might change:

• jive.activitymanager.endpoints

%appsmarket% The jive.appsmarket.id may need to change if the value changes for the new

data center, making it different from the failed data center.

Extracted properties that might change:

• jive.appsmarket.id

Rebuilding an On-prem HA Search Service

As of Jive 7.0, the HA search rebuild process has been simplified. The ingress replicators now send rebuild

traffic to all of the search nodes. Therefore, ensure that all of the search service nodes are available before

you start a rebuild.

To start a search rebuild, go to Admin Console: System > Settings > Search and click Rebuild Index.

Starting Up After a Failover

Depending on whether you're able to correctly set up dynamic redirects for the nodes, you will either start

up the newly active system automatically or manually.

Starting Up Automatically

If you have correctly set up the dynamic redirects as described in the Configuring Jive for High-Availability

section, after a failover, you would start up the new web application nodes by running the jive start

command on each enabled web app node in the new system. Doing this will start up all of the other nodes

and services in the new configuration.

Starting Up Manually

If, for whatever reasons, you are unable to set up dynamic redirects, then, in the event of a failure, you

would need to manually do the following in the passive/now-active data center before starting it up:

 | Administering the Platform | 41

1. On the web application nodes, edit the jive_startup.xml file to point to the new data center as described

in Configuring the Web Application Servers for High-Availability.

2. On the core application database nodes, edit the Activity Engine database property (jive.eae.db.url) in

the jiveProperty table to point to the new Activity Engine database. For a connection string configuration

example, see Configuring the Activity Engine Database for High-Availability.

3. On the core application database nodes, edit the Analytics database property

(__jive.analytics.database.serverURL) in the jiveProperty table to point to the new Analytics database.

For a connection string configuration example, see Configuring the Analytics Database for High-

Availability.

After you have manually performed the above tasks, start up the new web application nodes by running the

jive start command on each enabled web app node. Doing this will start up all of the other nodes and

services in the newly active configuration.

Clustering in Jive

This topic provides an overview of the system that supports clustered installations of Jive.

While they're different services, the clustering and caching systems interoperate. In fact, an application

cluster requires the presence of a separate cache server for caching data for use by all application server

nodes in the cluster.

For information on installing the application on a cluster, see Setting Up a Cluster.

Parts of the Clustering System

• Application Servers In the middle-tier, multiple application servers are set up and the clustering

feature is enabled. Caches between the application instances are automatically synchronized. If a

particular application server fails, the load-balancer detects this and removes the server from the

cluster.

• Cache Server On a separate machine from application servers is a cache server that is available to all

application server nodes in the cluster (in fact, you can't create a cluster without declaring the address

of a cache server).

• Database Server All instances in a cluster share the same database.

• Load Balancer Between users and the application servers is a load-balancing device. The device may

be hardware- or software-based. Every user has a session (represented by a unique cookie value) that

allows stateful data to be maintained while they are using the application. Each session is created on

a particular application server. The load-balancer must be "session-aware," meaning that it inspects

the cookie value and always sends a given user's requests to the same application server during a

given session. Without session-aware load balancing, the load-balancer could send requests to any

application server in the cluster, scrambling results for a given user.

The follow illustration shows the typical cluster configuration. Note that the database server and cache

server are separate nodes, but not part of the cluster.

 | Administering the Platform | 42

The existence of a cluster is defined in the database, which stores the TCP endpoint for each node in

the cluster. A node knows it's supposed to be in a cluster because the database it is using shows that

clustering is enabled. Nodes in a cluster use the application database to register their presence and locate

other nodes. Here's how that works at start up:

1. When an application server machine starts up, it checks the database to discover the TCP endpoint (IP

address and port) it should bind to.

2. If the node can't find its TCP endpoint in the database (because this is the first time is has started and

tried to join a cluster, for example), it will look for the first non-loopback local address it can use. It tries

to bind to a default port (7800). If it fails, it will scan up to port 7850 until it finds a port it can bind to. If

this fails, the node doesn't join the cluster.

3. Having established an endpoint for itself, the node notes the other node addresses it found in the

database.

4. The node joins the cluster.

Clustering Best Practices

Here are a few best practice suggestions for clustered installations.

• Ensure that the number of nodes in your cluster is greater than what you'll need to handle the load

you're getting. For example, if you're at capacity with three nodes, then the cluster will fail when one

of those nodes goes down. Provision excess capacity so that your deployment can tolerate a node's

failure.

• If you have document conversion enabled, and one of the machines is faster than the others, start that

one first.

 | Administering the Platform | 43

Clustering FAQ

Do all cluster members need to be on the same local network? Yes. It's better for performance.

Is it possible to have more than one cluster per physical network? You can have two deployments

(i.e., CommunityA and CommunityB) on the same physical network operating as two clusters. You cannot

have a single deployment (i.e., CommunityA) separated into two clusters.

How do configuration files work in a cluster? All configuration data (except bootstrap information such

as database connection information) is stored in the database. Changing configuration settings on one

cluster member will automatically update them on all other cluster members.

Can I set a cluster node's TCP endpoint to a particular value? Yes. If you have an address and port

you want to force a node to bind to, you can do that by setting those values in the Admin Console. If you do

that, the node will try that address and port only; it won't scan for an address and port if the one you specify

fails. For more information, see Configuring a Cluster Node.

How will I know if a cluster node has failed or can't be found by the cluster? The Cluster page in the

Admin Console displays a list of nodes in the cluster. See Configuring a Cluster Node for more information.

Managing an Application Cluster

The clustering system is designed to make it easy to add and remove cluster nodes. By virtue of

connecting to an application database that other cluster nodes are using, a node will automatically discover

and join the cluster on start up. You can remove a node using the Admin Console.

Be sure to see the clustering overview for a high-level view of how clustering works.

Enabling and Disabling a Cluster

You can enable or disable clustering in the Admin Console. See Configuring a Cluster Node for more

information.

Adding a Cluster Node

When you add a new node to the cluster, you must first manually copy the encryption keys from the /usr/

local/jive/applications/app_name/home/crypto directory to each of the other nodes. Then

restart every node in the cluster to ensure that the new node is seen by the others.

You might also be interested in Setting Up a Cluster, which describes the process for installing or

upgrading the application on an entire cluster.

Fastpath: Admin Console: System > Settings > Cluster

1. Install the application on the new node as described in Installing the Linux Package.

2. Finish setting up the new node, restart it, and let it get up and running.

By default, the node will scan for the TCP endpoint and register itself in the database. You can also

specify a particular endpoint in the Admin Console as described in Configuring a Cluster Node.

3. Restart all nodes in the cluster so that the other nodes can become aware of the new node.

 | Administering the Platform | 44

Removing a Cluster Node

When you want to be sure that a node's registration is removed from the database, you can remove a node

from a cluster by using the Admin Console.

Fastpath: Admin Console: System > Settings > Cluster

1. Ensure that the node you want to remove is shut down.

2. In the Admin Console for any of the nodes in the cluster, on the Cluster page, locate the address of the

node you want to remove.

3. Next to the node's address, select the Remove check box.

4. Click Save to save settings and remove the address from the database.

Settings will be automatically replicated across the cluster.

In-Memory Caching

The in-memory caching system is designed to increase application performance by holding frequently-

requested data in memory, reducing the need for database queries to get that data.

The caching system is optimized for use in a clustered installation, where you set up and configure a

separate external cache server. In a single-machine installation, the application will use a local cache in the

application's server's process, rather than a cache server.

Note: Your license must support clustering in order for you to use an external cache server.

Parts of the In-Memory Caching System

In a clustered installation, caching system components interoperate with the clustering system to provide

fast response to client requests while also ensuring that cached data is available to all nodes in the cluster.

Note: For more on setting up caching in a clustered installation, see Setting Up a Cache Server.

Application server. The application manages the relationship between user requests, the near cache, the

cache server, and the database.

Near cache. Each application server has its own near cache for the data most recently requested from that

cluster node. The near cache is the first place the application looks, followed by the cache server, then the

database.

Cache server. The cache server is installed on a machine separate from application server nodes in the

cluster. It's available to all nodes in the cluster (in fact, you can't create a cluster without declaring the

address of a cache server).

Local cache. The local cache exists mainly for single-machine installations, where a cache server might

not be present. Like the near cache, it lives with the application server. The local cache should only be

 | Administering the Platform | 45

used for single-machine installations or for data that should not be available to other nodes in a cluster. An

application server's local cache does not participate in synchronization across the cluster.

Clustering system. The clustering system reports near cache changes across the application server

nodes. As a result, although data is not fully replicated across nodes, all nodes are aware when the content

of their near caches must be updated from the cache server or the database.

How In-Memory Caching Works

For typical content retrievals, data is returned from the near cache (if the data has been requested recently

from the current application server node), from the cache server (if the data has been recently requested

from another node in the cluster), or from the database (if the data is not in a cache).

Data retrieved from the database is placed into a cache so that subsequent retrievals will be faster.

Here's an example of how changes are handled:

1. Client makes a change, such as an update to a user profile. Their change is made through node A of

the cluster, probably via a load balancer.

2. The node A application server writes the change to the application database.

3. The node A app server puts the newly changed data into its near cache for fast retrieval later.

4. The node A app server puts the newly changed data to the cache server, where it will be found by other

nodes in the cluster.

5. Node A tells the clustering system that the contents of its near cache have changed, passing along

a list of the changed cache items. The clustering system collects change reports and regularly sends

them in a batch to other nodes in the cluster. Near caches on the other nodes drop any entries

corresponding to those in the change list.

6. When the node B app server receives a request for the data that was changed, and which it has

removed from its near cache, it looks to the cache server.

7. Node B caches the fresh data in its own near cache.

 | Administering the Platform | 46

Cache Server Deployment Design

In a clustered configuration, the cache server should be installed on a machine separate from the clustered

application server nodes. That way, the application server process is not contending for CPU cycles with

the cache server process. It is possible to have the application server run with less memory than in a

single-machine deployment design. Also note that it is best if the cache servers and the application servers

are located on the same network switch. This will help reduce latency between the application servers and

the cache servers.

Note: For specifics about hardware configuration, see the System Requirements.

Choosing the Number of Cache Server Machines

A single dedicated cache server with four cores can easily handle the cache requests from up to six

application server nodes running under full load. All cache server processes are monitored by a daemon

process which will automatically restart the cache server if the JVM fails completely.

In a cluster, the application will continue to run even if all cache servers fail. However, performance

will degrade significantly because requests previously handled via the cache will be transferred to the

database, increasing its load significantly.

 | Administering the Platform | 47

Adjusting Cache-Related Memory

Adjusting Near Cache Memory

The near cache, which runs on each application server node, starts evicting cached items to free up

memory once the heap reaches 75 percent of the maximum allowed size. When you factor in application

overhead and free space requirements to allow for efficient garbage collection, a 2GB heap means that the

typical amount of memory used for caching will be no greater than about 1GB.

For increased performance (since items cached in the near cache are significantly faster to retrieve than

items stored remotely on the cache server) larger sites should increase the amount of memory allocated to

the application server process. To see if this is the case, you can watch the GC logs (or use a tool such as

JConsole or VisualVM after enabling JMX), noting if the amount of memory being used never goes below

about 70 percent even after garbage collection occurs.

Adjusting Cache Server Memory

The cache server process acts similarly to the near cache. However, it starts eviction once the heap

reaches 80 percent of the maximum amount. On installations with large amounts of content, the default

1GB allocated to the cache server process may not be enough and should be increased.

To adjust the amount of memory the cache server process will use, set the cache.jvm_heap_max and

cache.jvm_heap_min values as shown in the following example. For more on cache properties, see Cache

Startup Properties.

jive set cache.jvm_heap_max 2048
jive set cache.jvm_heap_min 2048

Make sure to set the min and the max to the same value -- otherwise, evictions may occur prematurely. If

you need additional cache server memory, recommended values are the default of 2048 (2GB) or 4096

(4GB). You'll need to restart the cache server for this change to take effect. See Managing Cache Servers

for more information.

Managing In-Memory Cache Servers

This topic describes how you can manage the cache server nodes in a cluster. This includes starting and

stopping servers, adding and removing nodes, and moving a node.

For information about installing cache servers in a cluster, see Setting Up a Cache Server.

Synchronizing Server Clocks

Cache servers determine the consistency of cached data between cache servers partially based on the

timestamp used when storing and retrieving the data. As a result, all the clocks on all machines (both

cache server machines and app server nodes) must be synchronized. It is common to do this through the

use of an NTP daemon on each server synchronized to a common time source. You'll find a good starting

point for understanding NTP at http://www.ntp.org/ntpfaq/. Note that clock synchronization becomes even

http://en.wikipedia.org/wiki/JConsole
https://visualvm.dev.java.net/
http://java.sun.com/javase/reference/index.jsp
http://www.ntp.org/ntpfaq/

 | Administering the Platform | 48

more important when running within a virtualized environment; some additional steps may be required for

proper clock synchronization as outlined in the vendor's documentation.

Also, if you're running in a virtualized environment, you must have VMware tools installed in order to

counteract clock drift.

Starting and Stopping Cache Servers

You can start and stop cache servers using the commands described below. Note that all cached data on

that machine will be lost when its cache server is shut down.

Note: If you're logged in as root, you can use su - jive to become the jive user.

Start a cache server using the following command as a jive user:

jive start cache

To stop a cache server use the following command as a jive user:

jive stop cache

Adding a Cache Server Machine

Adding a cache server to a cluster that has existing cache machines requires additional steps beyond

a fresh installation. In particular, you'll need to shut down the entire cluster (both application and cache

servers) before you add a new cache server.

Note: Having multiple cache servers is common only to high-availability configurations.

1. Before you shut down the cluster, add the new cache server machine. In the Admin Console, go to

System > Settings > Caches. In the Cache Servers field, add the new cache server machine, then

save the settings.

2. Shut down every node in the cluster.

3. Install the new cache server as described in Setting Up a Cache Server.

4. On each of the existing cache machines, set the cache machine addresses by typing jive set

cache.hostnames list_of_hostnames as a jive user. You can use the a comma separated list of

IP addresses or domain names, but be consistent with the format (use IP addresses or domain names,

but not both) and order you use. For more on this and setting up cache servers for high-availability, see

Configuring the Cache Servers for High-Availability on page 12.

5. Start up all cache servers before starting the application servers.

Removing a Cache Server Machine

Removing a cache server from an existing cluster is very similar to adding one.

 | Administering the Platform | 49

1. Before you shut down the cluster, remove the cache server machine from the list. In the Admin

Console, go to System > Settings > Caches. From the Cache Servers field, remove the cache server

machine, then save the settings.

2. Shut down every node in the cluster.

3. On each of the existing cache machines, set the cache machine addresses by typing jive set

cache.hostnames list_of_hostnames as a jive user. You can use the a comma separated list of

IP addresses or domain names, but be consistent with the format (use IP addresses or domain names,

but not both) and order you use. For more on this and setting up cache servers for high-availability, see

Configuring the Cache Servers for High-Availability on page 12.

4. Start up all cache servers before starting the application servers.

Moving a Cache Server to Another Machine

Moving a cache server from an existing cluster is very similar to adding a machine.

1. Before you shut down the cluster, update the list of cache servers. In the admin console, go to System

> Settings > Caches. In the Cache Servers field, change the address for the cache server machine

you're going to move, then save the settings.

2. Shut down every node in the cluster.

3. On each of the existing cache machines, set the cache machine addresses by typing jive set

cache.hostnames list_of_hostnames as a jive user. You can use the a comma separated list of

IP addresses or domain names, but be consistent with the format (use IP addresses or domain names,

but not both) and order you use. For more on this and setting up cache servers for high-availability, see

Configuring the Cache Servers for High-Availability on page 12.

4. Start up all cache servers before starting the application servers.

Configuring In-Memory Caches

In-memory caching reduces the number of trips the application makes to its database by holding often-

requested data in memory. When you configure cache servers, you give each server the list of all cache

server machines. For example, you might edit the list of cache server machines when you're adding or

removing servers.

For information on adding and removing cache servers, see Managing Cache Servers. For information on

installing cache servers, see Setting Up a Cache Server.

The Caches page in the Admin Console lists the application's caches and provides information on how well

they're being used. This information is for use in troubleshooting if you need to call Jive support.

Fastpath: Admin Console: System > Settings > Caches

Registering Cache Servers

You need to register the cache server(s) in the Cache Servers box of the Caches Admin Console page. If

you have more than one cache server, such as with a high-availability configuration, they must all be listed

a comma separated list of either IP addresses or domain names, but be consistent with the format (use IP

 | Administering the Platform | 50

addresses or domain names, but don't combine them) and order you use. For more on this and setting up

cache servers for high-availability, see Configuring the Cache Servers for High-Availability on page 12.

For more information about adding, removing, and moving cache servers, see Managing Cache Servers.

Getting Cache Performance Information

When requested by Jive Support, you can provide information about caches using the Cache

Performance Summary table on the Caches page in the Admin Console. There, you'll find a list the

individual kinds of data cached. Many represent content, such as blog posts and documents. Others

represent other data that can be performance-expensive to retrieve from the database.

For each cache, you'll find the following information:

Column Name Description

Cache Name You can click the cache name to view advanced statistics about the cache. You might

use these statistics when working with the support team to resolve cache-related issues.

General information about the advanced statistics is provided below.

Objects Generally speaking, each object in the cache represents a different instance of the item.

For example, if the Blog cache has 22 objects in it, it means that 22 of the community's

blogs are represented there.

Hits / Misses A cache hit is recorded when a query to the cache for the item actually finds it in the

cache; a cache miss is when the item isn't found in the cache and the query much go

to the database instead. As you might imagine, a higher ratio of hits to misses is more

desirable because it means that requests are finding success in the cache, making

performance from the user's perspective better.

Effectiveness The effectiveness number -- a percentage -- is a good single indicator of how well a

particular cache is serving your application. When a cache is being cleared often (as

might happen if memory constraints are being reached), the ratio of cache hits to misses

will be lower.

Clear Cache Check

Box

When you're asked to clear a cache, select its check box, then click the Clear Selected

button at the bottom of the cache list table.

Troubleshooting Caching and Clustering

This topic lists caching- or clustering-related problems that can arise, as well as tools and best practices.

Log Files Related to Caching

If a cache server machine name or IP address is invalid, you'll get verbose messages on the command

line. You'll also get the messages in log files found in $JIVE_HOME/var/logs/.

• cache-gc.log -- Output from garbage collection of the cache process.

• cache-service.out -- Cache startup messages, output from the cache processes, showing start flags,

restarts, and general errors.

 | Administering the Platform | 51

Misconfiguration Through Mismatched Cache Address Lists

If you have multiple cache servers, the configuration list of cache addresses for each must be the same.

A mismatched configuration will show up in the cache-service.out file. For example, if two servers have

the same list, but a third one doesn't, the log will include messages indicating that the third server has one

server but not another, or that a key is expected to be on one server, but is on another instead.

For more on adding a cache server to a cluster, see Adding a Cache Server Machine on page 48. If

you're setting up cache servers for high-availability, then also take a look at Configuring the Cache Servers

for High-Availability on page 12.

Cache Server Banned Under Heavy Load

Under extreme load, an application server node may be so overwhelmed that it may ban a remote cache

server for a small period of time because responses from the cache server are taking too long. If this

occurs, you'll see it in the application log as entries related to the ThresholdFailureDetector.

This is usually a transient failure. However, if this continues, take steps to reduce the load on the

application server to reasonable levels by adding more nodes to the cluster. You might also see this in

some situations where a single under-provisioned cache server (for example, a cache server allocated

just a single CPU core) is being overwhelmed by caching requests. To remedy this, ensure that the cache

server has an adequate number of CPU cores. For more on hardware requirements, see Cache Server

Hardware Requirements.

Banned Node Can Result in Near Cache Mismatches

While the failure of a node won't typically cause caching to fail across the cluster (cache data lives in a

separate cache server), the banning of an unresponsive node can adversely affect near caches. This will

show up as a mismatch visible in the application user interface.

An unresponsive node will be removed from the cluster to help ensure that it doesn't disrupt the rest of the

application (other nodes will ignore it until it's reinstated). Generally, this situation will resolve itself, with the

intermediate downside of an increase in database access.

If this happens, recent content lists can become mismatched between nodes in the cluster. That's because

near cache changes, which represent the most recent changes, are batched and communicated across

the cluster. If the cluster relationship is broken, communication will fail between the banned node and other

nodes.

After First Start up, Node Unable to Leave Then Rejoin Cluster

After the first run of a cluster -- the first time you start up all of the nodes -- nodes that are banned (due

to being unresponsive, for example) might appear not to rejoin the cluster when they become available.

That's because when each node registers itself in the database, it also retrieves the list of other nodes

from the database. If one of the earlier nodes is the cluster coordinator -- responsible for merging a banned

cluster node back into the cluster -- it will be unaware of a problem if the last started node becomes

unreachable.

 | Administering the Platform | 52

To avoid this problem, after you start every node for the first time, bounce the entire cluster. That way,

each will be able to read node information about all of the others.

For example, imagine you start nodes A, B, and C in succession for the first time. The database contained

no entries for them until you started them. Each enters its address in the database. Node A starts,

registering itself. Node B starts, seeing A in the database. Node C starts, seeing A and B. However,

because node C wasn't in the database when A and B started, they don't know to check on node C -- if it

becomes unreachable, the won't know and won't inform the cluster coordinator. (Note that the coordinator

might have changed since start up).

If a node leaves the cluster, the coordinator needs to have the full list at hand to re-merge membership

after the node becomes reachable again.

Monitoring Your Jive Environment
Set up your monitoring systems so that you're alerted before things go wrong.

Jive Software strongly recommends that system administrators set up monitoring systems for Jive

platforms that are deployed on-premise. (Monitoring for hosted customers is performed automatically by

Jive Software).

Monitoring the health of the nodes in your Jive deployment and setting up system alerts can help you avoid

costly community downtime, and can also be helpful for correctly sizing the hardware of your deployment.

To understand how to properly size your community, be sure to read Deployment Sizing and Capacity

Planning.

Basic Monitoring Recommendations
Here are some monitoring recommendations that are relatively easy to implement.

Consider monitoring the following items using a monitoring tool such as check_MK, Zenoss, Zyrion, IBM/

Tivoli, or other monitoring tool(s). Polling intervals should be every five minutes.

Caution: If you are connecting Jive to other resources such as an LDAP server, SSO system,

SharePoint, and/or Netapp storage, we strongly recommend setting up monitoring on these

external/shared resources. Most importantly, if you have configured Jive to synchronize against

an LDAP server, or if you have configured Jive to authenticate against an SSO, we strongly

recommend that you configure monitoring and alerting on that external resource so that you can

properly troubleshoot login issues. At Jive Software, we see outages related to the LDAP server not

being available in our hosted customer environments.

 | Administering the Platform | 53

Node What you should

monitor

Why you should monitor it

On all

nodes
• Memory

utilization

• CPU load

• Disk space

• Disk I/O

activity

• Network traffic

• Clock

accuracy

These checks help you monitor all the basics and should be useful for

troubleshooting. We recommend performing each of the following checks

every five minutes on each server.

• Memory utilization: If your memory utilization is consistently near 75%,

consider increasing the memory.

• CPU load: On healthy web application nodes, we typically see CPU

load between 0 and 10 (with 10 being high). In your environment, if the

CPU load is consistently above 5, you may want to get some thread

dumps using the jive snap command, and then open a support case on

the Jive Community.

• Disk space: On the web application nodes, you'll need enough disk

space for search indexes (which can grow large over time) and

for attachment/image/binary content caching. The default limit for

the binstore cache is 512MB (configurable from Admin console:

System > Settings > Storage Provider). We recommend starting

with 512MB for the binstore cache. Note that you also need space for

generated static resources.

• Network traffic: While you may not need a specific alert for this,

monitoring this is helpful for collecting datapoints. This monitor can be

helpful for understanding when traffic dropped off.

• Clock accuracy: In clustered deployments, ensuring the clocks are

accurate between web application nodes is critical. We strongly

recommend using NTP to keep all of the server clocks in sync.

https://community.jivesoftware.com/community/support

 | Administering the Platform | 54

Node What you should

monitor

Why you should monitor it

Jive web

application(s)

We recommend

running a

synthetic health

check against

your Jive

application (using

a tool such as

WebInject).

• Individual web

application

server

• Through the

load balancer's

virtual IP

address

WebInject interacts with the web application to verify basic functionality.

It provides functional tests beyond just connecting to a listening port.

Checking individual servers, as well as the load balancer instance, verifies

proper load balancer behavior. We recommend setting these checks

every five minutes initially. To minimize false alarms, we require two

failures before an alert is sent. If you find that these settings are resulting

in too many false alarms, then adjust your settings as needed.

We recommend setting up WebInject tests that perform the following:

• request the Admin Console login page (this verifies that Apache and

Tomcat are running)

• log in to the Admin Console (this verifies that the web application node

can communicate with the database server)

• request the front-end homepage (this verifies at a high level that

everything is okay)

For an example of WebInject XML code that will perform all of the above,

see WebInject Code Example.

Cache

server
• Java

Management

Extensions

(JMX) hooks

(heap)

• Disk space

(logs)

JMX provides a means of checking the Java Virtual Machine's heap size

for excessive garbage collection. Disk space checks ensure continued

logging.

• Heap: If your heap is consistently near 75%, consider increasing the

heap size. To learn how, be sure to read Adjusting the Java Virtual

Machine (JVM) Settings on a Cache Server.

 | Administering the Platform | 55

Node What you should

monitor

Why you should monitor it

Databases

(Activity

Engine,

Analytics,

and web

application)

Stats for:

• Connections

• Transactions

• Longest query

time and slow

queries

Verify ETLs are

running

Disk space

Disk I/O activity

Database checks will show potential problems in the web application

server which can consume resources at the database layer (such as

excessive open connections to the database).

• Connections: More connections require more memory. If you need

to increase the maximum number of connections allowed by the Jive

installation to the core database, consider adding more memory to the

database server while ensuring that the database server has enough

memory to handle the database connections. The maximum number

of connections to the core database is the maximum number of

connections allowed for each web application node times the number

of webapp nodes in the Jive installation (To learn how to set those, see

Getting Basic System Information). Out-of-the-box settings for the core

database connections are 25 minimum, 50 maximum. For high-traffic

sites in our hosted environment, we set the core database to 25/125.

Note that additional nodes should be used instead of more database

connections for managing additional traffic.

Default connection settings for the analytics database are 1 minimum

and 15 maximum (you may need to adjust this based on usage and

load). For the activity engine database the defaults are 1 minimum and

50 maximum.

• Transactions: If the database provides an easy way to measure this

number, it can be helpful for understanding overall traffic volume.

However, this metric is less important than monitoring the CPU/

memory/IO utilization for capacity planning and alerting.

• Longest query time and slow queries: It's helpful to monitor slow query

logs for the database server that they're provisioned against. In our

hosted (PostgreSQL) deployments, we log all slow queries (queries

that take more than 1000ms seconds) to a file and then monitor those

to help find any queries that might be causing issues that could be

helped by database indexes.

• Verify ETLs are running: This is important only for the Analytics

database. The easiest way to monitor this is by querying the

jivedw_etl_job table with something like this: select

state, start_ts, end_ts from jivedw_etl_job

where etl_job_id = (select max(etl_job_id) from

jivedw_etl_job); If the state is 1, the ETL is running. If any state

is 3, there is a hard failure that you need to investigate. If the difference

between start_ts and end_ts is too big, you may need to increase

the resources for the Analytics database.

• Disk space: On the web application nodes, you'll need enough disk

space for search indexes (which can grow large over time) and

for attachment/image/binary content caching. The default limit for

the binstore cache is 512MB (configurable from Admin console:

System > Settings > Storage Provider). We recommend starting

with 512MB for the binstore cache. Note that you also need space

for generated static resources. The most critical place to monitor disk

space is on the database server; you should never have less than 50%

of your disk available. We recommend setting an alert if you reach

more than 50% disk utilization on the database server.

• Disk I/O activity: This is good to record because it can be important

if you see slow performance on the web application node(s) and

excessive wait time.

 | Administering the Platform | 56

Node What you should

monitor

Why you should monitor it

Document

conversion
• Tomcat I/O

• Heap

• Queue

statistics

(e.g., average

length and

wait times)

• Running

OpenOffice

service

statistics

• Overall

conversion

success rate

for each

conversion

step

The various service statistics are exposed via JMX's mbean and can be

accessed the same way as JMX on the web application node's Tomcat's

Java Virtual Machine.

Activity

Engine
• Activity Engine

service

• Java

Management

Extensions

(JMX) hooks

(heap) and

ports

• Queue

statistics

(e.g., average

length and

wait times)

JMX provides a means of checking the Java Virtual Machine's heap size

for excessive garbage collection. Disk space checks ensure continued

logging.

• Heap: If your heap is consistently near 75%, consider increasing the

heap size. To learn how, be sure to read Adjusting the Java Virtual

Machine (JVM) Settings.

• To understand more about the queue depths for the Activity Engine,

see Configuring the Activity Engine.

Jive Logs
Jive provides logs that gather application and service information, warnings, and errors that can help you

troubleshoot issues.

 | Administering the Platform | 57

By default, your logs can be found in Jive installation directory/var/logs. You can change the log directory

by setting main.log_dir:

jive set main.log_dir

Using the logrotate script

You'll find a logrotate script at Jive installation directory/sbin/logrotate. This script cleans up old gc log files

and runs the logrotate tool with configuration from Jive installation directory/etc/conf/logrotate.conf. The

RPM installation creates a symlink in /etc/cron.hourly to the logrotate script so that it is executed each

hour.

Note: If your jive installation directory is not the default /usr/local/jive or you have modified

the main.log_dir startup property, you'll need to modify the logrotate script so it references the

actual installation directory.

WebInject Code Example
Here is an example of XML code for WebInject that will perform several basic checks on a web application

node.

Note: To learn more about monitoring, be sure to read: Monitoring Your Jive Environment.

This script is designed to perform the following checks on a web application node:

• request the Admin Console login page (this verifies that Apache and Tomcat are running) (case

id="1")

• log in to the Admin Console (this verifies that the web application node can communicate with the

database server) (case id="2")

• request the front-end homepage (this verifies at a high level that everything is okay) (case id="3")

• request the index page (case id="4")

In addition, consider monitoring the time it takes this check to run and set an alert threshold at N seconds

to ensure this check succeeds in a timely manner.

<testcases repeat="1">
<testvar varname="BASEURL">http://my-jive-instance.my-domain.com:80</
testvar>
<testvar varname="LOGIN">admin</testvar>
<testvar varname="PASSWORD">admin-password\</testvar>

<case
 id="1"
 description1="Hit main page"
 description2="Verify 'SBS' exists on page"
 method="get"
 url="${BASEURL}/admin/login.jsp?url=main.jsp"
 verifypositive="SBS"
/>

<case

 | Administering the Platform | 58

 id="2"
 description1="Log in as admin user"
 description2="Follow redirect"
 method="post"
 url="${BASEURL}/admin/admin_login"
 postbody="url=main.jsp&login=false&username=${LOGIN}&password=
${PASSWORD}"
 verifyresponsecode="302"
 parseresponse="Location:|\n"
/>

<case
 id="3"
 description1="Get main.jsp"
 description2="Check for 'System'"
 method="get"
 url="{PARSEDRESULT}"
 verifypositive="System"
/>

<case
 id="4"
 description1="Get index.jspa"
 description2="Check for 'Welcome'"
 method="get"
 url="${BASEURL}/index.jspa"
 verifypositive="Welcome|Location: ${BASEURL}/wizard-step\!input.jspa|
Location: .*/terms-and-conditions\!input.jspa"
/>

</testcases>

Advanced Monitoring Recommendations
These advanced monitoring recommendations require intermediate experience with monitoring systems.

Consider monitoring the following items using a monitoring tool such as check_MK, Zenoss, Zyrion, IBM/

Tivoli, or other monitoring tool(s). Polling intervals should be every five minutes.

Caution: If you are connecting Jive to other resources such as an LDAP server, SSO system,

SharePoint, and/or Netapp storage, we strongly recommend setting up monitoring on these

external/shared resources. Most importantly, if you have configured Jive to synchronize against

an LDAP server, or if you have configured Jive to authenticate against an SSO, we strongly

recommend that you configure monitoring and alerting on that external resource so that you can

properly troubleshoot login issues. At Jive Software, we see outages related to the LDAP server not

being available in our hosted customer environments.

JMX Data Points

Node Data Type JMX Object

Name

JMX Attribute Name Data Point

Jive web

application(s)

JVM Heap Memory java.lang:type=MemoryHeapMemoryUsage max

JVM Heap Memory java.lang:type=MemoryHeapMemoryUsage used

 | Administering the Platform | 59

Node Data Type JMX Object

Name

JMX Attribute Name Data Point

Voldemort Cache

Average Operation

Time

voldemort.store.stats.aggregate:type=aggregate-

perf

averageOperationTimeInMs milliseconds

Voldemort Cache

Average Operation

Time

voldemort.store.stats.aggregate:type=aggregate-

perf

averageOperationTimeInMs milliseconds

Cache

server

JVM Heap Memory java.lang:type=MemoryHeapMemoryUsage max

JVM Heap Memory java.lang:type=MemoryHeapMemoryUsage used

Activity

Engine

JVM Heap Memory java.lang:type=MemoryHeapMemoryUsage max

JVM Heap Memory java.lang:type=MemoryHeapMemoryUsage used

PostgreSQL Data Points

At Jive Software, we collect the PostegreSQL data points for the core application database and the Activity

Engine database. You may choose to also collect these data points for the Analytics database; we do not

do this at Jive Software.

Query Method Type Data Points

poll_postgres.py script Connections Total, Active, Idle

This script makes one

query to the database.

The query returns all

of the following data

points at once.

Locks Total, Granted, Waiting, Exclusive,

Access Exclusive

Latencies Connection latency, SELECT Query

latency

Tuple Rates Returned, Fetched, Inserted,

Updated, Deleted

Operations Cookbook

This section is intended to provide sample configurations and script examples common to long-term

operation of a Jive installation.

 | Administering the Platform | 60

These operations are common to a new installation, but generally not for day-to-day operation of the

platform.

 Configuring SSL on the Load Balancer
Configuring SSL termination at the load balancer, which is required, involves configuring your load

balancer pool with your SSL certificate information and the addresses of your web app nodes, then

ensuring your JiveURL property matches the load balancer.

This procedure describes how to configure SSL termination at the load balancer, which is required to

effectively secure your installation. Running the Jive site behind a load balancer allows you to operate your

Jive web application nodes on a separate, non-public network. For this reason most customers will find it

sufficient to terminate SSL at the load balancer and proxy http connections to the web application nodes. If

you want to also configure SSL encryption between your load balancer and each web application node, go

here.

Note: To ensure consistent results, you should enable SSL for your UAT environment as well as

your production instance of Jive. The Apps Market requires an additional domain. To properly test

and implement SSL, then, if you use Apps, you'll need certificates for community.yourdomain.com

and apps.community.yourdomain.com (Production) as well as community-uat.yourdomain.com and

apps.community-uat.yourdomain.com (UAT). To secure these domains, you should purchase two

Multiple Domain UC certificates with SAN entries for the Apps domain. If you're a hosted customer,

you can contact Support instead of using the steps below to apply the certificates. You can find

more information about Apps subdomain security here.

To configure SSL termination at the load balancer:

1. Configure your load balancer pool to use the SSL certificates you've acquired for your sites.

2. Create a DNS record for each domain that resolves to your load balancer pool's IP address.

3. Add all of your site's web application node addresses and ports to the balancer pool. For example, add:

http://myapp-wa01.internal.mycompany.com:8080

http://myapp-wa02.internal.mycompany.com:8080

http://myapp-wa03.internal.mycompany.com:8080

4. On each of the webapp nodes, set the required proxy-related properties and restart. For example:

jive set webapp.http_proxy_name community.mycompany.com

jive set webapp.http_proxy_port 443

jive set webapp.http_proxy_scheme https

5. Make sure that the jiveURL property in Jive's core database is set to the address of the load balancer

by going to System > Management > System Propertiesand checking the setting of the JiveURL

system property.

 | Administering the Platform | 61

6. Restart Jive on all the web application nodes.

Configuring SSL Between a Load Balancer and Web App Nodes
Configuring SSL encryption between your load balancer and each web application node is not required, but

if you plan to do it, you'll need to acquire an SSL certificate for each node.

To set up SSL encryption to each node:

1. On each webapp node, enable SSL by assigning the following startup properties: jive set

httpd.ssl_enabled True jive set httpd.ssl_certificate_file /path/to/your/

crt/file jive set httpd.ssl_certificate_key_file /path/to/your/key/file

2. Change your load balancer pool's members to reflect the new SSL port. For example:

https://myapp-wa01.internal.mycompany.com:8443 https://

myapp-wa02.internal.mycompany.com:8443 https://myapp-

wa03.internal.mycompany.com:8443

3. Restart httpd on all the web application nodes.

Configuring Session Affinity on a Load Balancer
Jive requires session affinity to be configured on your load balancer.

Session affinity on the load balancer is required. For an F5 BigIP load balancer, you can simply use a

default cookie persistence profile. See the recommended F5 settings elsewhere in the documentation. If

you have another type of load balancer, which doesn't create its own cookies for session affinity, you can

use the JSESSIONID cookie that Jive sets. See the Apache HTTPD documentation for examples.

To configure session affinity:

1. Set a route string for each balancer member in your load balancer configuration. For example, use the

string node01 in the balancer pool configuration for myapp-wa01.internal.mycompany.com.

2. Set the corresponding startup property on that web application node. If you used the route string

node01, you might set:

jive set webapp.app_cluster_jvmroute node01

3. Follow the same pattern for your other web application nodes.

4. Restart the web application on all the web application nodes.

Restricting Admin Console Access by IP Address
You can secure the Admin Console by allowing or denying specific IP addresses.

To specify who can access the Admin Console based on IP address:

1. Locate the /usr/local/jive/etc/httpd/sites/default.conf file.

2. Allow or deny IP addresses by adding and modifying the following code.

<Location /admin> Order Deny,Allow Allow from <IP ADDRESS> Allow from <IP

ADDRESS> Allow from <IP ADDRESS> Allow from <IP ADDRESS> Allow from <IP

ADDRESS> Deny from all </Location>

 | Administering the Platform | 62

Changing the Configuration of an Existing Instance
Update environment variables in your /usr/local/jive/applications/app_name/bin/instance

file to reflect new configuration settings.

In some circumstances, it may be desirable to change the default configuration of platform-managed

application server instances. For example, on a larger server-class machine, an application instance will

benefit from allocation of more RAM for the JVM heap.

To change this or other settings, edit the instance file for the desired application (sbs by default) located

at /usr/local/jive/applications/app_name/bin/instance.

The contents of this file will vary from release to release. Generally, the entries in this file correspond to

either:

• Environment variable values in the setenv script located in the same directory

• Tokenized configuration attributes for the conf/server.xml file in the application directory

For any managed application, all files except the binaries for the web application (by default, each

application is linked to these binaries located at /usr/local/jive/applications/template/

application) are not managed by the application platform. As a result, any changes to files such as

instance will be durable across application upgrades.

Changing the Port

As an example, to change the port that the managed application listens for AJP connections, edit the

instance file to alter the port for AJP_PORT.

Prior to edit, the instance file will look similar to the following.

[0806][jive@melina:~/applications/sbs/bin]$ cat instance
export JIVE_HOME="/usr/local/jive"
export AJP_PORT="9002"
export APP_CLUSTER_ADDR="224.224.224.224"
export JIVE_APP_CACHE_TTL="10000"
export APP_CLUSTER_PORT="9003"
export HTTPD_ADDR="0.0.0.0"
export AJP_BUFFER_SIZE="4096"
export HTTP_ADDR="127.0.0.1"
export JIVE_APP_CACHE_SIZE="10240"
export SERVER_PORT="9000"
export JIVE_NAME="sbs"
export HTTP_PORT="9001"
export AJP_ADDR="127.0.0.1"
export JIVE_CONTEXT=""
export AJP_THREADS_MAX="50"

To alter the AJP_PORT to listen on port 11000, edit the instance file to appear similar to the following:

[0806][jive@melina:~/applications/sbs/bin]$ cat instance
export JIVE_HOME="/usr/local/jive"
export AJP_PORT="11000"
export APP_CLUSTER_ADDR="224.224.224.224"
export JIVE_APP_CACHE_TTL="10000"
export APP_CLUSTER_PORT="9003"
export HTTPD_ADDR="0.0.0.0"

 | Administering the Platform | 63

export AJP_BUFFER_SIZE="4096"
export HTTP_ADDR="127.0.0.1"
export JIVE_APP_CACHE_SIZE="10240"
export SERVER_PORT="9000"
export JIVE_NAME="sbs"
export HTTP_PORT="9001"
export AJP_ADDR="127.0.0.1"
export JIVE_CONTEXT=""
export AJP_THREADS_MAX="50"

Changing the Heap Min/Max Values

To change the JVM min/max values, see Adjusting Java Virtual Machine (JVM) Settings.

Configuring the JVM Route Name of a Node(s)

To configure the route name of your web application node(s), add a line(s) to the instance file in /usr/

local/jive/applications/<app_name>/bin as follows, where "node01" is your desired route

name:

export APP_CLUSTER_JVMROUTE="node01"

When configuring multiple nodes with jvmRoute attributes, each node should have a different value.

Using an External Load Balancer

In order to integrate the Jive platform with an external load balancer, configure the load balancer for

cookie-based session affinity between each host running the platform. (All Jive's testing of load balancers

is cookie-based.) As of Jive 7, the load balancer is required to perform SSL session termination as

described in Configuring SSL on a Load Balancer. You may also wish to configure SSL encryption

between the load balancer and each web application node. See Configuring SSL Between a Load

Balancer and Web App Nodes for more information.

Depending on the load balancer, it may be necessary to add JVM route information to the outgoing

JSESSIONID HTTP cookies sent to remote agents. For information about using Apache HTTPD as a load

balancer, see Apache's documentation about load balancer stickyness. To understand how to configure

the route name (jvmRoute variable) of your node(s) in Jive, see the "Configuring the Route Name of a

Node(s)" section of Changing the Configuration of an Existing Instance.

Some load balancers require a "magic" HTML file in the site root to make the node available. If your load

balancer requires this, add the following line to this default configuration file /usr/local/jive/etc/

httpd/sites/default.conf:

ProxyPass /magicfile.html !

To learn more about Apache's ProxyPass and how it works, see their documentation.

http://httpd.apache.org/docs/2.2/mod/mod_proxy_balancer.html#stickyness_implementation
http://httpd.apache.org/docs/2.2/mod/mod_proxy.html#proxypass

 | Administering the Platform | 64

Enable Application Debugger Support

The Jive web application is capable of accepting remote Java debuggers. To enable debugging, set the

necessary additional java arguments before starting the managed application to be debugged using the

following steps.

Warning: You should not run this operation on a production site.

1. Run jive list webapp.custom_jvm_args to check whether you have an override value already

set for webapp.custom_jvm_args.

2. If you have not set a value for this property, run the following command:

jive set webapp.custom_jvm_args " -Xdebug -
Xrunjdwp:transport=dt_socket,address=9090,suspend=n,server=y"

3. If you already have a value for this property, run:

 jive set webapp.custom_jvm_args " PREVIOUS_VALUE_HERE -Xdebug -
Xrunjdwp:transport=dt_socket,address=9090,suspend=n,server=y"

4. To apply your changes, run jive restart webapp.

Setting Up Document Conversion

Some documents -- including PDFs and those from Microsoft Office -- are supported in a preview view

in Jive. To convert content from its native format into a form that can be previewed without altering the

original document, you'll need the Document Conversion module, which you'll need to deploy on a server

that is separate from your core Jive production instances.

We support converting the following file types on Office 2003 and 2007:

• doc

• ppt

• docx

• pptx

• xls

• xlsx

• pdf

Note: For information about managing conversion attempts and reconverting documents if

necessary, see Managing Document Conversion.

Here is an overview of the steps you'll perform to set up Document Conversion:

1. Set up a production instance of the Jive application (see Installing the Linux Package). You'll be

devoting one node in your installation to document conversion.

2. Install the Jive platform RPM on your conversion node machine. Then disable the services not related

to document conversion. For more information, see Installing and Configuring on the Conversion

 | Administering the Platform | 65

Machine. Download and install the correct RPM for the PDF2SWF utility on the conversion node

machine. You can find the RPMs here.

Note: On the document conversion node, use the --replacefiles flag if you receive the

following error when installing either the jive_sbs rpm or jive_pdf2swf.

file /usr/local/jive/bin/pdf2swf from install of rpm_name conflicts
 with file from package other_rpm_name the flag

3. Enable the Document Conversion service using the following commands:

jive enable docconverter

jive start

4. On the application node, configure the application to communicate with the conversion machine(s).

5. If you want to set up secure communication to the conversion machine, see Setting Up SSL for

Document Conversion.

Adding Fonts to Support Office Document Preview
Install your licensed True Types fonts on the document conversion server to enable accurate previews of

uploaded Microsoft Office documents.

Note: If you need to use languages such as Chinese, Japanese, Korean, and Arabic in an on-

premise installation, you need to install the proper licensed fonts to enable proper text display

in document preview mode. Licensing limitations prevent Jive from distributing these fonts with

the installation package. (If your Jive community is hosted by Jive, this custom font feature is not

supported, but Jive will install language-specific fonts for supported languages.)

1. Locate the font package(s) you want to install.

2. Connect to the document conversion server as root.

3. Using the operating system's package manager, install the fonts on the document conversion server.

4. The font(s) should now have been added to fontconfig on your system. You can verify that a particular

font is installed and ready to be used by the document conversion service by typing fc-list and making

sure the font is listed.

5. As root, restart the document conversion service (/etc/init.d/jive-docconverter restart).

Sharing Exchange Calendars in an HTML Text Widget
Using an Exchange 2010 SP1 or later email server, you can set up a community widget to show users'

Exchange calendars, with customizable levels of visible calendar details.

Caution: Calendar sharing uses Exchange Web Services to make HTML and iCal versions of

the users' calendars available. Depending on your Exchange topology, this can (and will) publish

calendar URLs to the Internet, where they could be viewed by anyone. If you want to prevent this,

make sure you have a secure firewall in place.

To get started, set up the following on your Exchange server:

https://static.jiveon.com/docconverter

 | Administering the Platform | 66

• Create a calendar sharing profile

• Enable the calendar sharing profile for each user for whom you want to have a visible calendar in the

community

Note: You cannot share calendars contained in public folders. A shared calendar must be a user

mailbox.

Next, follow these steps to publish shared calendars in your community:

1. Ensure that calendar publishing is enabled on your Exchange server. To do this, you can use the

following Exchange PowerShell commandlet:

Get-OwaVirtualDirectory | ft server, Name,
 CalendarPublishingEnabled

2. Enable calendar publishing with:

Set-OWAVirtualDirectory "SERVER\owa
 (Default Web Site)" –CalendarPublishingEnabled:
$true

3. From the Exchange Management Shell, create a new calendar sharing profile and enable anonymous

shares:

New-SharingPolicy -Name "Calendar Sharing
 Policy"

4. Set the sharing policy on user mailboxes who wish to share their calendars:

Set-Mailbox -Identity User.Mailbox -SharingPolicy "Calendar Sharing
 Policy"

5. Tell the target users to share their calendars either via Outlook 2010 or via Outlook Web Access.

6. When the user publishes a shared calendar, gather the full text of the "Link for viewing calendar in a

web browser." This link will look something like this:

https://YOUR.MAIL.SERVER/owa/calendar/GUID@YOURDOMAIN.PUBLIC/
DIFFERENT_GUID/calendar.html

7. In the community place where you want to share calendars, edit the place to include an HTML widget.

8. In the widget, include the link from above. This link must be contained in an iframe tag. Here is an

example:

<iframe src="https://YOUR.MAIL.SERVER/owa/calendar/GUID@YOURDOMAIN.PUBLIC/
DIFFERENT_GUID/calendar.html" width="1200" height="800"></iframe>

9. Save and publish your changes to the place.

Your results in the space will look something like this:

 | Administering the Platform | 67

Fine-Tuning Performance

Through adjustments to caches, JVM settings, and more, you can make sure that the application is

performing well.

It's almost certain that you'll want to adjust application settings from their defaults shortly after you're up

and running. In particular, you'll want to keep an eye on caching, but there are other things you can do to

ensure that the application is performing as well as possible. See the following for tuning suggestions.

Client-Side Resource Caching

The platform HTTPD server is pre-configured for optimal caching of static production content. Default

configuration values for content caching can be found on a Jive-managed server at /usr/local/jive/etc/httpd/

conf.d/cache.conf. You can edit this file to change default cache time or headers for specific scenarios

(changing length of time static images are cached, for example). Changes to this file will be preserved

across upgrades to a file named “cache.conf.rpmnew”. If this file is changed, be sure to check for new

enhancements when upgrading.

Note: Certain resources in plugins and themes are cached for 28 days by default. These include

the following file types: .js, .css, .gif, .jpeg, .jpg, and .png. This means that clients won't see updated

versions of those files until their cache expires or is cleared. Of course, changing the resource's file

name will also cause it to be downloaded because it isn't yet cached.

Configuring External Static Resource Caching

If you're using a lightweight content delivery network (CDN), you can configure the community to tell clients

to retrieve static resources from your CDN server. This improves performance by reducing load on the Jive

server. You can make this setting in the Admin Console.

http://en.wikipedia.org/wiki/Content_delivery_network

 | Administering the Platform | 68

Fastpath: Admin Console: System > Settings > Resource Caching

This feature assumes that you've set up and configured your CDN software to retrieve static resources

from the application server when necessary. Here are the basic steps:

1. Set up your CDN, configuring it to be aware of your Jive server.

2. Configure the resource caching feature with the CDN base URL where static resources can be found

when requested.

3. At run time, when building pages for a client, Jive will rewrite static resource locations so that their

URLs point to your CDN server.

4. When completing the page request, the client will use the CDN URL to retrieve static resources.

5. If the CDN server has the resource, it will return it; if not, it will retrieve the resource from the Jive

server, return it to the client, and cache it for future requests.

To configure the feature, go to Admin Console: System > Settings > Resource Caching and select the

Enable external caching... check box. Enter the CDN URL where static resources can be retrieved by

clients.

Adjusting the Java Virtual Machine (JVM) Settings

As with any Java-based web application, you can sometimes improve performance by assigning particular

values to the Java Virtual Machine options. You can edit the JVM minimum and maximum memory settings

on a node by editing the values for the jvm_heap_max and jvm_heap_min variables from the command

line. These values are expressed in MB. For example, to set the minimum and maximum heap available on

the web application node to 4GB, from the command line interface you would type the following:

jive set webapp.jvm_heap_max 4096

jive set webapp.jvm_heap_min 4096

The default JVM values for each of the nodes is listed in Startup Property Reference. The command

settings are listed in Startup Properties Commands on page 72. Note that your particular community

may need to decrease or increase the default values depending on the size and traffic of your community.

For sizing capacity recommendations, be sure to read Deployment Sizing and Capacity Planning.

JVM Recommendations

Node Recommendations

Jive Web Application(s) To ensure that the appropriate resources are available to the running application, we recommend setting

the jvm_heap_min and jvm_heap_max to the same value on the web application node(s). In a clustered

environment, these min and max values should be the same for all of the web application nodes. For larger

communities, that is, communities that get more than 100,000 page views per day or that contain a large amount

of content (more than 100,000 messages, documents, or blog posts), you may need to increase the JVM heap

min and max settings to be both 4096 or both 6144.

 | Administering the Platform | 69

Node Recommendations

Additional Cluster Nodes (if your

configuration includes these optional

nodes)

These values should match those of the primary web app nodes.

Activity Engine None.

Cache Server(s) (if your configuration

includes these optional nodes)

None.

Document Conversion (if you have

this optional module)

We recommend not changing the default settings. They have consistently performed well in all pre-release

quality, stress, and performance tests.

Search Index Rebuilding
In rare cases, particularly after a version upgrade and depending on your configuration, you may

experience long search index rebuild times. In this case, you may wish to adjust the search index

rebuild system properties to increase the limit on the amount of resources used, potentially improving

performance.

Fastpath: Admin Console: System > Management > System Properties

Search index performance can vary greatly depending on the size and number of binary documents and

attachments, as well as user activity, in your community. By default, the search index parameters are set

to use as few memory and CPU resources as possible during a rebuild. If you experience extremely long

search index rebuild times (for example, because your community has created a large amount of content)

and you have additional CPU and memory resources to spare, contact Support about adjusting the search

index rebuild system properties.

Using a Content Distribution Tool with Jive
Many of Jive Software's customers rely on a third-party content distribution and/or content delivery network

(CDN) tool to help their Jive pages load faster for globally-dispersed users. In this section, we describe

some best practices for using Jive with these tools.

Note: The application can be configured to work with most CDN tools. While there are a number of

hardware appliances that customers use inside their firewall, Jive has found that the majority of on-

premise customers choose to deploy behind devices sold by F5.

Recommended Settings for F5

In most cases, your Jive configuration should rely on the default settings in F5. However, there are a few

settings that Jive Software’s hosting engineers commonly customize to optimize hosted Jive deployments.

Generally speaking, Jive Software recommends using the default settings in F5 because F5 is already

optimized for them and customizations you create may require more processing, and thus, more load.

http://www.f5.com/

 | Administering the Platform | 70

The following tables list the settings that Jive Software’s hosting engineers typically change in F5. These

are general guidelines. Your needs may be different. Contact your Jive Software representative with

specific questions.

Table 2: Node Configuration

Setting Description

ICMP Health Monitor A simple ICMP request (PING) to the node to confirm it is online and

operating at its most basic level.

Table 3: Pool Configuration

Setting Description

TCP Health Monitor This is necessary because HTTP does not always show it is down when

the Jive application goes into a maintenance mode. At Jive Software,

we depend on Web Injections via a separate monitoring service to

determine whether a node in a pool is operational or not. Therefore, if

a TCP connection fails to the port that is specified by the VIP, the node

is considered down and removed from the pool. Note that a node will

not be considered down if the Jive application dies but the service is

still running. This is why we use Web Injections to do more appropriate

application level uptime validation. For more about monitoring Jive, be

sure to read Monitoring Your Jive Environment.

Load balancing method: Least

Connections (node).

This will cause the Jive application to load balance based on the

number of connections to the node, regardless of whether the

connections are related to the pool traffic. Therefore, load is balanced

over all between individual nodes.

Table 4: HTTP VIP Configuration

Setting Description

OneConnect /32 profile This profile is used to accommodate the CDN fronting the Jive

application access. This setting allows F5 to properly handle multiple

HTTP requests within the same TCP connection, as you would see

when using a CDN. For more details, read F5’s documentation here.

HTTP Profile (this applies only

if you are using F5 VIP’s with

SNAT).

This is a customized profile based off the parent HTTP profile to insert

the true client source IP using either Request Header Insert or Insert X-

Forwarded-For. This is for HTTP logging because F5 acts as a reverse

proxy to the Jive web application nodes.

http://support.f5.com/kb/en-us/solutions/public/7000/900/sol7964.html?sr=11716037

 | Administering the Platform | 71

Setting Description

Set the SNAT Pool to Auto

Map.

F5 acts as a reverse proxy to the Jive web application nodes; the Jive

application needs the traffic response from the web application nodes to

respond back through F5. This setting isn’t required, but we recommend

it as a best practice for configuring the F5 in a one-armed mode.

Set the default persistence

profile to cookie

This will maintain session persistence based on an inserted cookie.

Keep iRules as simple as

possible.

At Jive Software, our hosting engineers try to keep iRule use to a

minimum because they are evaluated each time traffic passes the VIP to

which it is attached. Because this adds processing load, we recommend

keeping it simple and adding as few iRules as possible.

Use an iRule or HTTP Class

Profile for redirect from HTTP

to HTTPS.

To keep processing to a minimum, we recommend using the

configuration options built into F5 rather than iRules to accomplish HTTP

to HTTPS redirects. However, be aware that using an HTTP Class

Profile for redirects uses a 302 redirect (Temporary), not a 301 redirect

(Permanent). To understand why this may cause problems with your

configuration, read more here. If this is acceptable for you, then you can

use an HTTP Class Profile to accomplish your redirect; otherwise, you'll

need to use an iRule. Here is an example of each:

• iRule:

when HTTP_REQUEST {

HTTP::respond 301 Location "https://[HTTP::host]
[HTTP::uri]"
}

• HTTP Class Profile: use the Send To option and select Redirect

To. Then, in the Redirect to Location, set it to https://[HTTP::host]

[HTTP::uri]

Table 5: HTTPS VIP Configuration

Setting Description

Set everything the same

as above in HTTP VIP

Configuration, except the

following:

http://webdesign.about.com/od/http/qt/tip301v302redir.htm

 | Administering the Platform | 72

Setting Description

Use the default HTTP Profile

(this applies only if you are

using F5 VIP’s with SNAT).

The HTTP profile cannot be used to insert the true client source IP into

the header of an HTTPS connection. This must be done by using an

iRule for HTTPS traffic. Here is a simple example:

when HTTP_REQUEST { HTTP::header insert
 JiveClientIP [IP::remote_addr] }

Set the Client SSL Profile to

cover your SSL certificate, key,

and chain.

We recommend leaving everything else as the default parent profile of

clientssl. You may want to consider removing the renegotiation option

from the parent clientssl profile for security reasons. Caution: there is a

potential DoS risk here. To learn more about it, be sure to read https://

community.qualys.com/blogs/securitylabs/2011/10/31/tls-renegotiation-

and-denial-of-service-attacks).

Application Management Command Reference

Use the jive command to perform tasks on your instance. The jive command is located in

<yourjivehome>/python/bin. This path is automatically added to your $PATH variable by .bash_profile.

You can run jive --help to see a full list of available commands. Usage is as follows:

jive [-h] [--version]
 [command{start,stop,restart,status,enable,disable,list,set,del,doc,setup,snap}]

Startup Properties Commands

Following are the commands you can use with any of the Startup Properties. These commands enable you

to set, list, or delete startup properties on any of the nodes in the configuration. In addition, you might want

to check out the Services Properties Commands topic.

Note: Execute these commands as the jive user. For example, if you've got ssh access as root to

your host machine, use the following command to switch to the jive user:

sudo su - jive

jive doc Shows Help for the most commonly modified

startup properties.

jive list Shows all the startup properties you have

overridden.

jive list [substring_match] Lists properties matching the specified substring.

jive list -p Shows properties in a props file format that you can

easily parse with scripts.

jive list -v Shows all of the available startup properties.

 | Administering the Platform | 73

jive set [property_name] [prop_value] Overrides the existing value of the specified startup

property with the new value.

jive del [property_name] Removes the override for the specified property so

that the default value will be used.

Services Properties Commands

Following are the commands you can use with any of the services. These commands enable you to check

the status of any of the services, as well as stop, start, or restart them. You might also want to check out

the Startup Properties Commands.

Note: Execute these commands as the jive user. For example, if you've got ssh access as root to

your host machine, use the following command to switch to the jive user:

sudo su - jive

jive status Shows all of the services, their running status, and

their enabled status.

jive status -v Shows the ports on which the services are listening.

jive enable

[servicename{cache,docconverter,eae,ingress-

replicator,search,webapp,httpd}]

Enables the specified service so that it starts when

you run jive start.

jive disable

[servicename{cache,docconverter,eae,ingress-

replicator,search,webapp,httpd}]

Disables the specified service.

jive start Starts all enabled services.

jive start

[servicename{cache,docconverter,eae,ingress-

replicator,search,webapp,httpd}]

Starts the one specified service.

jive stop Stops all running services.

jive stop

[servicename{cache,docconverter,eae,ingress-

replicator,search,webapp,httpd}]

Stops the one specified service.

jive restart Restarts all running services.

jive restart

[servicename{cache,docconverter,eae,ingress-

replicator,search,webapp,httpd}]

Restarts the one specified service.

jive restart --graceful httpd Performs a graceful restart of the httpd service.

 | Administering the Platform | 74

jive snap Takes a system or service snapshot. For usage,

see jive snap.

jive snap Command

The jive snap command passively gathers information about running services.

jive snap [options] [servicename{cache,docconverter,eae,ingress-
replicator,search,webapp,httpd}]

Short Long Description

 -h --help Show help message and exit.

Table 6: Snapshot Options

Defines the interval and count of snapshots taken.

Short Long Description

-c

COUNT

--count=COUNT Sample count to take [default 1]

-i

INTERVAL

--interval=INTERVAL Time between samples [default 3]

-o

OUTPUT

--out=OUTPUT Append output to the given file creating if the file does not exist

[default STDOUT]

	Contents
	Administering the Platform
	Jive and High-Availability
	Supported High-Availability Jive Configurations
	Designing a Single Data Center HA Configuration
	Designing a Multiple Data Center HA Configuration
	Supported HA Search

	Configuring Jive for High-Availability
	Configuring the Web Application Servers for High-Availability
	Configuring the Activity Engine Server for High-Availability
	Configuring the Cache Servers for High-Availability
	Configuring the Document Conversion Server for High-Availability
	Configuring the Core Application Database for High-Availability
	Configuring the Analytics Database for High-Availability
	Configuring the Activity Engine Database for High-Availability
	Configuring an On-Premise Search Service for High-Availability
	Capacity and Scaling Considerations
	Required Nodes for an On-Premise HA Search Service
	HA Search Setup Overview
	Installing One or More Search Servers
	Installing One or More Search Ingress Replicators
	Setting Up the HA Search Proxy
	Services Directory for HA Search

	Adding an On-Premise HA Search Server
	Adding a New Search Node to the Configuration
	Point to the New Search Node

	Failover Behavior of HA Servers
	System Failover
	Failover and Data Recovery in the Caches
	Failover and Data Recovery in the Activity Engine
	Failover and Data Recovery in the Document Conversion Service
	Failover and Data Recovery in Storage
	Failover and Data Recovery in the Core Database
	Failover and Data Recovery in the Analytics Database
	Failover and Data Recovery in the Search Service

	Recovering Jive After a Failure
	Restoring the Web Application Server File System
	Restoring the Database With Persistent Properties
	Rebuilding an On-prem HA Search Service
	Starting Up After a Failover

	Clustering in Jive
	Clustering Best Practices
	Clustering FAQ
	Managing an Application Cluster
	Enabling and Disabling a Cluster
	Adding a Cluster Node
	Removing a Cluster Node

	In-Memory Caching
	Parts of the In-Memory Caching System
	How In-Memory Caching Works
	Cache Server Deployment Design
	Choosing the Number of Cache Server Machines
	Adjusting Cache-Related Memory
	Managing In-Memory Cache Servers
	Starting and Stopping Cache Servers
	Adding a Cache Server Machine
	Removing a Cache Server Machine
	Moving a Cache Server to Another Machine

	Configuring In-Memory Caches
	Registering Cache Servers
	Getting Cache Performance Information

	Troubleshooting Caching and Clustering

	Monitoring Your Jive Environment
	Basic Monitoring Recommendations
	Jive Logs
	Advanced Monitoring Recommendations

	Operations Cookbook
	Configuring SSL on the Load Balancer
	Configuring SSL Between a Load Balancer and Web App Nodes
	Configuring Session Affinity on a Load Balancer
	Restricting Admin Console Access by IP Address
	Changing the Configuration of an Existing Instance
	Using an External Load Balancer
	Enable Application Debugger Support
	Setting Up Document Conversion
	Adding Fonts to Support Office Document Preview
	Sharing Exchange Calendars in an HTML Text Widget

	Fine-Tuning Performance
	Client-Side Resource Caching
	Configuring External Static Resource Caching
	Adjusting the Java Virtual Machine (JVM) Settings
	Search Index Rebuilding
	Using a Content Distribution Tool with Jive
	Recommended Settings for F5

	Application Management Command Reference
	Startup Properties Commands
	Services Properties Commands

